partial_program.py 38.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
17
import six
18

19
import paddle
20
from paddle.fluid import framework, backward, core, program_guard
21 22 23 24
from paddle.fluid.executor import (
    _is_enable_standalone_executor,
    _is_dy2st_enable_standalone_executor,
)
25
from paddle.fluid.dygraph import layers
26
from paddle.fluid.dygraph.base import switch_to_static_graph
27
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
28 29 30
from paddle.fluid.dygraph.dygraph_to_static.return_transformer import (
    RETURN_NO_VALUE_MAGIC_NUM,
)
31 32
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
33 34
from paddle.fluid.layers.utils import _hash_with_id
from paddle.fluid.compiler import BuildStrategy
35
from paddle.fluid.framework import _apply_pass
36 37 38 39 40 41 42 43 44 45 46
from paddle.fluid.contrib.mixed_precision.decorator import (
    AutoMixedPrecisionLists,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
    rewrite_program,
    cast_model_to_fp16,
)
from paddle.fluid.dygraph.amp.auto_cast import (
    _in_amp_guard,
    _in_pure_fp16_guard,
)
47
import paddle.compat as cpt
48
from paddle import _C_ops, _legacy_C_ops
49

50 51 52 53 54 55 56 57 58

class NestSequence(object):
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
59
        self.__input_list = self.tolist()
60 61 62 63 64 65 66 67 68 69 70 71 72
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
73
        assert len(self.__input_list) == len(value_list)
74 75 76 77
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
78
        for idx, var in enumerate(self.__input_list):
79
            if isinstance(
80 81
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
82 83 84 85 86 87 88 89 90 91
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
92
            for var in self.__input_list:
93
                if not isinstance(
94 95
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
96 97
                    warning_types.add(type(var))
            if warning_types:
98
                logging_utils.warn(
99 100
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
101 102 103 104
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
105 106 107 108 109 110

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
111
        return self.__input_list[item]
112

113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
class LazyInitialized(object):
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


137
class PartialProgramLayer:
138 139 140 141 142
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
143 144 145
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
146 147 148 149 150 151 152 153 154 155 156 157
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

158 159 160
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
161
        super(PartialProgramLayer, self).__init__()
162 163
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
164
        self._params = parameters if parameters is not None else []
165

166 167 168
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

169
        self._origin_main_program = self._verify_program(main_program)
170 171 172
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
173
        # Set default mode to train
174
        self.training = True
175

176
        amp_dtype, custom_white_list, custom_black_list = None, None, None
177 178 179
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
180 181 182 183 184 185 186 187
            amp_dtype = tracer._amp_dtype
        if amp_dtype is not None and amp_dtype in ['float16', 'bfloat16']:
            # For AMP training
            self._amp_list = AutoMixedPrecisionLists(
                custom_white_list=custom_white_list,
                custom_black_list=custom_black_list,
                dtype=amp_dtype,
            )
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        # program_id -> list(scope)
        self._scope_cache = {}

    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

208 209 210 211 212 213 214 215
    @LazyInitialized
    def __fake_vars(self):
        return _create_fake_var()

    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

216 217 218 219 220 221 222
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
223 224
                self._origin_main_program
            )
225 226 227
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
228

229 230 231 232 233 234 235 236 237 238 239
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
            rewrite_program(amp_program, self._amp_list)
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
240

241 242 243
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
244 245
            for_test=is_infer_mode
        )
246
        with program_guard(pure_fp16_program):
247 248 249
            cast_model_to_fp16(
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
250 251 252 253
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
254 255
                pure_fp16_program
            )
256 257
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
258

259
    @switch_to_static_graph
260 261 262
    def _create_forward_backward_train_program(self):
        whole_program = self._create_program()
        forward_end_op_index = self._infer_program.desc.block(0).op_size()
263 264 265
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
266

267 268 269 270
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
        whole_program = self._create_amp_program()
        forward_end_op_index = self._infer_amp_program.desc.block(0).op_size()
271 272 273
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
274 275 276 277 278

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
        whole_program = self._create_pure_fp16_program()
        forward_end_op_index = self._infer_pure_fp16_program.desc.block(
279 280 281 282 283
            0
        ).op_size()
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
284 285

    @LazyInitialized
286 287
    def _train_program(self):
        return self._create_program()
288

289
    @LazyInitialized
290 291
    def _infer_program(self):
        return self._create_program(is_infer_mode=True)
292

293 294 295 296 297 298 299
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
        return self._create_amp_program(is_infer_mode=True)
300 301 302

    @LazyInitialized
    def _train_pure_fp16_program(self):
303
        return self._create_pure_fp16_program()
304

305
    @LazyInitialized
306 307
    def _infer_pure_fp16_program(self):
        return self._create_pure_fp16_program(is_infer_mode=True)
308

309
    @LazyInitialized
310 311 312
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
313 314

    @LazyInitialized
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

    @property
    def whole_program(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program
            else:
                return self._train_program
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[0]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[0]
            else:
                program = self._train_forward_backward_program
                return program[0]
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[1]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[1]
            else:
                program = self._train_forward_backward_program
                return program[1]
        else:
            return paddle.static.Program()
375

376 377
    @LazyInitialized
    def _train_program_id(self):
378
        program_id = _hash_with_id(self._train_program, self)
379 380 381
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
382
        return program_id
383

384 385 386 387
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

388 389 390
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
391 392 393
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
394 395
        return program_id

396 397 398 399
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

400 401 402
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
403 404 405
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
406 407
        return program_id

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

    @property
    def whole_program_id(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

429 430 431 432 433 434 435 436 437 438 439 440
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

441 442 443
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
444 445 446 447 448 449 450
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
451

452 453 454 455 456 457 458 459 460
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
461 462
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
479 480 481 482 483 484 485 486 487 488
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
489 490 491 492 493 494

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
495 496 497 498 499 500
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
501 502 503 504 505 506 507 508 509 510
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
511 512
                outputs={"Out": var_grad_name},
            )
513 514 515
            return None

        to_processed_vars = list(
516 517
            filter(_need_aggregation, self._outputs.tolist())
        )
518 519 520
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

521
    @switch_to_static_graph
522
    def _append_backward_desc(self, main_program):
523 524
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
525
        targets = []
526
        for out in self._outputs.tolist():
527 528 529 530 531 532
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

533 534 535
        start_idx = len(main_program.block(0).ops) + 2 * len(
            self._outputs.tolist()
        )
536 537

        self.prepare_gradient_aggregation(start_idx, main_program, program)
538

539 540
        return program

541 542 543 544 545 546 547 548 549 550
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
        The `@declarative` may only decorated a sub function which
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
551
            found_param = False
552
            for block in program.blocks:
553
                for op in block.ops:
554 555 556 557
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
558 559 560 561
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
562 563 564 565
                    break

        self._params = required_params

566 567 568 569 570 571
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
572
                    var_base = None
J
Jiabin Yang 已提交
573
                    if not framework._in_eager_mode_:
574 575 576 577 578 579 580
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
581
                    else:
582 583 584 585 586 587 588
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
589
                    double_grads.append(var_base)
590
        return self._valid_vars(double_grads)
591

592
    def _get_end_op_index(self):
593 594 595 596 597
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
598
            infer_program = self.infer_program
599 600
        return infer_program.desc.block(0).op_size()

601 602
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
603

604 605
        self._cast_fp16_if_pure_fp16(in_vars)

606
        attrs = [
607
            'global_block',
608 609 610 611 612 613 614 615 616
            self.program.desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self._get_end_op_index(),
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
617 618 619
        ]
        if self._cuda_graph_capture_mode:
            attrs.extend(
620 621 622 623 624 625 626 627 628 629 630 631
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )

        use_interpretorcore = (
            _is_enable_standalone_executor()
            and _is_dy2st_enable_standalone_executor()
        )
632 633 634
        attrs.extend(('use_interpretorcore', use_interpretorcore))
        if use_interpretorcore:
            attrs.extend(
635 636 637 638 639 640 641
                (
                    'forward_global_block',
                    self.forward_program.desc.block(0),
                    'backward_global_block',
                    self.backward_program.desc.block(0),
                )
            )
642

643
            _legacy_C_ops.run_program(
644 645
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
646
                self._valid_vars(out_vars),
647 648 649 650 651 652 653
                self._create_scope_vec(
                    program_id=self.program_id, use_scope_cache=True
                ),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
654
        else:
655 656 657 658 659 660 661 662 663
            _legacy_C_ops.run_program(
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
                self._valid_vars(out_vars),
                self._create_scope_vec(),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
664 665
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
666

667 668 669 670
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
671 672 673 674 675
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
676 677 678
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name

679 680
    @property
    def program(self):
681
        return self.whole_program
682

683 684
    @property
    def program_id(self):
685
        return self.whole_program_id
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program
704

705
    @switch_to_static_graph
706 707 708
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
709
        forward_builded_program = add_build_strategy_for(
710 711
            whole_program, 0, forward_end_op_index, self._build_strategy
        )
712
        backward_start_op_index = forward_end_op_index + 2 * len(
713 714
            self._outputs.var_ids
        )
715 716
        backward_end_op_index = whole_program.desc.block(0).op_size()
        backward_builded_program = add_build_strategy_for(
717 718 719 720 721 722 723 724
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
        )
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
725 726 727 728 729 730
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
731
            "for_partial_block": "bool",
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
        forward_mem_opt_skip_vars = []
        backward_mem_opt_skip_vars = []
        for var_name, var in forward_program.global_block().vars.items():
            if var.is_data:
                forward_mem_opt_skip_vars.append(var_name)
        for var_name, var in backward_program.global_block().vars.items():
            if var.is_data:
                backward_mem_opt_skip_vars.append(var_name)
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                forward_mem_opt_skip_vars.append(var.desc.name())
                backward_mem_opt_skip_vars.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                forward_mem_opt_skip_vars.append(var.desc.name())
                backward_mem_opt_skip_vars.append(var.desc.name())
        for var_name in core.parse_safe_eager_deletion_skip_vars(
753 754
            backward_program.desc
        ):
755 756 757 758
            forward_mem_opt_skip_vars.append(var_name)
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": forward_mem_opt_skip_vars,
759
            "for_partial_block": True,
760
        }
761 762 763 764 765 766 767
        _apply_pass(
            forward_program,
            empty_startup_program,
            "buffer_shared_inplace_pass",
            attrs,
            attr_types,
        )
768 769 770
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": backward_mem_opt_skip_vars,
771
            "for_partial_block": True,
772
        }
773 774 775 776 777 778 779
        _apply_pass(
            backward_program,
            empty_startup_program,
            "buffer_shared_inplace_pass",
            attrs,
            attr_types,
        )
780

781 782 783 784 785
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
786 787
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
788 789
        # Convert variable into VarBase and feed in training data.
        input_vars = []
790
        expected_place = framework._current_expected_place()
791
        for i, value in enumerate(flatten_inputs):
792
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
793
                var = None
J
Jiabin Yang 已提交
794
                if not framework._in_eager_mode_:
795 796 797 798 799 800 801
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
802
                else:
803 804 805 806 807 808 809
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
810
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
811 812 813 814
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
815 816
                    expected_place
                ):
817 818
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
819 820
                else:
                    var = value
821
                var.name = self._inputs[i].desc.name()
822 823 824
            else:
                continue
            input_vars.append(var)
825

826 827 828
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

829 830
        def create_out(var_id):
            var = self._outputs[var_id]
831
            assert isinstance(var, framework.Variable)
832
            var_desc = var.desc
J
Jiabin Yang 已提交
833
            varbase = None
834 835 836 837

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

J
Jiabin Yang 已提交
838
            if not framework._in_eager_mode_:
839 840 841 842 843 844 845
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
846
            else:
847 848 849 850 851 852 853
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
854
            var_base.stop_gradient = var.stop_gradient
855
            out_varbase_map[var_desc.name()] = var_base
856 857 858 859 860 861
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
862

863
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
864
        # Hold forward variables
J
Jiabin Yang 已提交
865
        tmp_scope_vec = None
866 867 868
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
J
Jiabin Yang 已提交
869
        if not framework._in_eager_mode_:
870 871 872 873 874 875 876
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
877
            tmp_scope_vec.value().set_scope(inner_scope)
878 879
        else:
            tmp_scope_vec = [inner_scope]
880
        return tmp_scope_vec
881

882
    def _create_cuda_graph_vec(self):
883 884 885 886 887 888 889
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
890 891 892
        var.stop_gradient = True
        return var

893 894 895 896 897 898 899 900 901
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
902
        if outs is not None and len(outs) == 1:
903 904 905 906
            outs = outs[0]

        return outs

907 908 909 910
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

911
    def _is_no_value(self, var):
912 913 914
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
915 916
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
917 918 919 920 921 922 923
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
924
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
925 926 927 928 929
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
930 931 932
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
933 934 935 936
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

937
            has_removed = len(out_vars) > len(res)
938 939 940 941 942 943 944 945 946 947
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

948
    def _set_grad_type(self, params, train_program):
949 950 951 952 953 954 955 956
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
957
            grad_var = train_program.desc.block(0).find_var(
958 959
                cpt.to_bytes(grad_name)
            )
960 961 962 963 964
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

965 966 967 968 969 970 971 972 973 974 975 976 977
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

978 979 980 981 982 983 984 985 986 987
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
988 989
                % type(self._params)
            )
990

991 992 993
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
994
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
995
                raise TypeError(
996 997 998 999
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1000
            param_and_buffer_names_set.add(var.name)
1001 1002

        for block in main_program.blocks:
1003
            for name, var in six.iteritems(block.vars):
1004
                if isinstance(var, framework.Parameter):
1005
                    if name not in param_and_buffer_names_set:
1006
                        raise ValueError(
1007 1008 1009 1010 1011 1012
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1013 1014
                            % name
                        )
1015

1016 1017 1018 1019 1020 1021 1022 1023
    def _valid_vars(self, vars):
        """
        Note: run_program_op.InferShape requires `X`/'Out' not be null.
        But it's common in dy2static, fake varBase is created to handle the
        problem.
        """
        return vars if vars else self.__fake_vars

1024

1025
def _create_fake_var():
1026
    """
1027
    Create a fake_var (force on CPU) to handle empty input or output
1028
    """
J
Jiabin Yang 已提交
1029
    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
1030
        return [
1031 1032 1033 1034 1035 1036 1037
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
J
Jiabin Yang 已提交
1038 1039
        ]
    else:
1040
        return [
1041 1042 1043 1044 1045 1046 1047
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
1048
        ]
1049 1050 1051 1052 1053 1054 1055


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1056 1057 1058 1059 1060 1061 1062
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1063 1064 1065


@switch_to_static_graph
1066 1067 1068 1069
def add_build_strategy_for(
    program, start_op_index, end_op_index, build_strategy=None
):
    if start_op_index < end_op_index:
1070 1071
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1072 1073 1074 1075 1076
            build_strategy=build_strategy,
        )
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1077 1078 1079 1080 1081 1082 1083
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program