partial_program.py 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
17 18 19
import logging

from paddle.fluid import log_helper
20 21
from paddle.fluid import framework, backward, core
from paddle.fluid.dygraph import layers
22 23
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
24 25 26
from paddle.fluid.dygraph.base import switch_to_static_graph
import paddle.compat as cpt

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
_logger = log_helper.get_logger(
    __name__, logging.WARNING, fmt='%(asctime)s-%(levelname)s: %(message)s')


class NestSequence(object):
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
        assert len(self.tolist()) == len(value_list)
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
        for idx, var in enumerate(self.tolist()):
            if isinstance(var, (framework.Variable, core.VarBase)):
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
            for var in self.tolist():
                if not isinstance(var, (framework.Variable, core.VarBase)):
                    warning_types.add(type(var))
            if warning_types:
                _logger.warning(
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
                    "what we first saw. Please try to return them as tensor.".
                    format(list(warning_types)))

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
        return self.tolist()[item]

86 87 88 89 90 91 92

class PartialProgramLayer(layers.Layer):
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
93 94 95
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
96 97 98 99 100 101 102 103 104 105 106 107 108 109
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

    def __init__(self, main_program, inputs, outputs, parameters=None):
        super(PartialProgramLayer, self).__init__()
110 111
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
112
        self._params = parameters if parameters is not None else []
113

114 115 116 117 118
        # Check all params from main program can be found in self._params:
        # 1. parameter in self._params should be type `framework.ParamBase` which are created in dygraph.
        # 2. parameter from transformed program shall be found in self._params.
        #    Because they share same data with ParamBase of original dygraph.
        self._check_params_all_inited(main_program)
119
        self._prune_unused_params(main_program)
120

121 122 123 124 125 126 127 128 129 130 131 132 133
        self._infer_program = main_program
        self._train_program = self._append_backward_desc()
        # Switch infer or train by train() and eval()
        self._trace_program = None
        self._set_grad_type(self._params)
        self._inner_scope = core.Scope()
        # Set default mode to train
        self.train()

    @switch_to_static_graph
    def _append_backward_desc(self):
        program = self._infer_program.clone()
        targets = []
134
        for out in self._outputs.tolist():
135 136 137 138 139 140 141 142
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

        return program

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
        The `@declarative` may only decorated a sub function which
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
            for block in program.blocks:
                if param.name in block.vars:
                    required_params.append(param)
                    break

        self._params = required_params

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    def train(self):
        # self.training is inherited from layers.Layer
        self.training = True
        self._trace_program = self._train_program

    def eval(self):
        self.training = False
        self._trace_program = self._infer_program

    def forward(self, inputs):
        in_vars, out_vars, tmp_scope_vec = self._prepare(inputs)

        framework._dygraph_tracer().trace_op(
            type='run_program',
            inputs={
                'X': valid_vars(in_vars),
                'Params': valid_vars(self._params)
            },
            outputs={'Out': valid_vars(out_vars),
                     'OutScope': tmp_scope_vec},
            attrs={
                'global_block': self._trace_program.desc.block(0),
                'start_op_index': 0,
                'end_op_index': self._infer_program.desc.block(0).op_size(),
                'is_test': not self.training
            })

187
        return self._restore_out(out_vars)
188 189 190 191 192 193

    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
194 195
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
196 197
        # Convert variable into VarBase and feed in training data.
        input_vars = []
198
        for i, value in enumerate(flatten_inputs):
199 200 201
            if isinstance(value, np.ndarray):
                var = core.VarBase(
                    value=value,
202
                    name=self._inputs[i].desc.name(),
203 204 205 206 207
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True)
            elif isinstance(value, core.VarBase):
                var = value
208
                var.name = self._inputs[i].desc.name()
209 210 211
            else:
                continue
            input_vars.append(var)
212

213 214
        # Create VarBase to receive output data.
        out_vars = []
215 216 217
        for idx in self._outputs.var_ids:
            var = self._outputs[idx]
            assert isinstance(var, framework.Variable)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
            var_desc = var.desc
            var_base = core.VarBase(var_desc.dtype(),
                                    var_desc.shape(),
                                    var_desc.name(), var_desc.type(), False)
            out_vars.append(var_base)

        # Hold forward variables
        tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                     "program_out_scope",
                                     core.VarDesc.VarType.STEP_SCOPES, True)

        tmp_scope_vec.value().set_scope(self._inner_scope)

        return input_vars, out_vars, tmp_scope_vec

233 234 235 236 237 238 239 240 241 242 243 244 245 246
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
        if len(outs) == 1:
            outs = outs[0]

        return outs

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    def _set_grad_type(self, params):
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
            grad_var = self._train_program.desc.block(0).find_var(
                cpt.to_bytes(grad_name))
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
                % type(self._params))

        params_name_set = set()
        for i, param in enumerate(self._params):
            if not isinstance(param, framework.ParamBase):
                raise TypeError(
                    'Type of self._params[{}] in PartialProgramLayer should be framework.ParamBase, but received {}.'.
                    format(i, type(param)))
            params_name_set.add(param.name)

        for block in main_program.blocks:
            for name, var in block.vars.items():
                if isinstance(var, framework.Parameter):
                    if name not in params_name_set:
                        raise ValueError(
                            "\n\tWe don't support to define layer with parameters in the function "
                            "decorated by `@declarative`.\n\tBecause that will re-defined parameters "
                            "every time when you run the function.\n\t"
                            "But we found parameter(%s) was created in the decorated function.\n\t"
                            "Please define the layer with parameters in `__init__` function."
                            % name)

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

def valid_vars(vars):
    """
    Note: run_program_op.InferShape requires `X`/'Out' not be null.
    But it's common in dy2static, fake varBase is created to handle the
    problem.
    """
    if vars:
        return vars
    return [
        core.VarBase(
            value=[1],
            name='Fake_var',
            place=framework._current_expected_place())
    ]


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

    return PartialProgramLayer(concrete_program.main_program, inputs,
                               concrete_program.outputs,
                               concrete_program.parameters)