matmul_v2_op_npu.cc 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/matmul_v2_op.h"
19
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
20 21 22 23

namespace paddle {
namespace operators {

24
using Tensor = phi::DenseTensor;
25 26 27 28
using NPUDeviceContext = platform::NPUDeviceContext;

template <typename T>
static void MatMul2D(const framework::ExecutionContext& ctx,
29
                     const aclrtStream& stream,
30 31 32
                     const phi::DenseTensor& X,
                     const phi::DenseTensor& Y,
                     phi::DenseTensor* Out,
33
                     const bool trans_x,
34 35 36
                     const bool trans_y) {
  Out->mutable_data<T>(ctx.GetPlace());
  const auto& runner =
37 38 39
      NpuOpRunner("MatMul",
                  {X, Y},
                  {*Out},
40 41 42 43 44 45
                  {{"transpose_x1", trans_x}, {"transpose_x2", trans_y}});
  runner.Run(stream);
}

template <typename T>
static void MatMulND(const framework::ExecutionContext& ctx,
46
                     const aclrtStream& stream,
47 48 49
                     const phi::DenseTensor& X,
                     const phi::DenseTensor& Y,
                     phi::DenseTensor* Out,
50
                     const bool trans_x,
51 52
                     const bool trans_y) {
  Out->mutable_data<T>(ctx.GetPlace());
53 54 55
  const auto& runner = NpuOpRunner("BatchMatMul",
                                   {X, Y},
                                   {*Out},
56 57 58 59
                                   {{"adj_x1", trans_x}, {"adj_x2", trans_y}});
  runner.Run(stream);
}

60 61 62 63
#if (CANN_VERSION_CODE < 504000)
template <>
void MatMulND<phi::dtype::float16>(const framework::ExecutionContext& ctx,
                                   const aclrtStream& stream,
64 65 66
                                   const phi::DenseTensor& X,
                                   const phi::DenseTensor& Y,
                                   phi::DenseTensor* Out,
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
                                   const bool trans_x,
                                   const bool trans_y) {
  Out->mutable_data<phi::dtype::float16>(ctx.GetPlace());
  Tensor x_fp32, y_fp32, out_fp32;
  x_fp32.Resize(X.dims());
  y_fp32.Resize(Y.dims());
  out_fp32.Resize(Out->dims());
  x_fp32.mutable_data<float>(ctx.GetPlace());
  y_fp32.mutable_data<float>(ctx.GetPlace());
  out_fp32.mutable_data<float>(ctx.GetPlace());

  const auto& cast_x =
      NpuOpRunner("Cast",
                  {X},
                  {x_fp32},
                  {{"dst_type",
                    static_cast<int>(ConvertToNpuDtype(
                        framework::TransToProtoVarType(x_fp32.type())))}});
  cast_x.Run(stream);
  const auto& cast_y =
      NpuOpRunner("Cast",
                  {Y},
                  {y_fp32},
                  {{"dst_type",
                    static_cast<int>(ConvertToNpuDtype(
                        framework::TransToProtoVarType(y_fp32.type())))}});
  cast_y.Run(stream);

  const auto& runner = NpuOpRunner("BatchMatMul",
                                   {x_fp32, y_fp32},
                                   {out_fp32},
                                   {{"adj_x1", trans_x}, {"adj_x2", trans_y}});
  runner.Run(stream);

  const auto& cast_out = NpuOpRunner(
      "Cast",
      {out_fp32},
      {*Out},
      {{"dst_type",
        static_cast<int>(
            ConvertToNpuDtype(framework::TransToProtoVarType(Out->type())))}});
  cast_out.Run(stream);
}
#endif

112 113 114 115
template <typename T>
static void ReduceDims(const framework::ExecutionContext& ctx,
                       const aclrtStream& stream,
                       const std::vector<int64_t>& dims,
116
                       const std::vector<int64_t>& brd_dims,
117 118
                       const phi::DenseTensor& in,
                       phi::DenseTensor* out) {
119 120 121 122 123 124 125 126 127 128 129 130 131
  std::vector<int64_t> axes;
  int64_t size = brd_dims.size();
  int64_t diff = brd_dims.size() - dims.size();
  for (int64_t i = 0; i < size; ++i) {
    if (i < diff) {
      axes.push_back(i);
      continue;
    }
    if (brd_dims[i] > dims[i - diff]) {
      axes.push_back(i);
    }
  }
  out->mutable_data<T>(ctx.GetPlace());
132 133
  const auto& runner = NpuOpRunner(
      "ReduceSumD", {in}, {*out}, {{"axes", axes}, {"keep_dims", false}});
134 135 136 137
  runner.Run(stream);
}

template <typename T>
138 139 140
class MatMulV2NPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
141 142 143
    auto* X = ctx.Input<phi::DenseTensor>("X");
    auto* Y = ctx.Input<phi::DenseTensor>("Y");
    auto* Out = ctx.Output<phi::DenseTensor>("Out");
144 145 146
    const bool trans_x = ctx.Attr<bool>("trans_x");
    const bool trans_y = ctx.Attr<bool>("trans_y");

147 148 149
    std::vector<int64_t> x_dims = phi::vectorize(X->dims());
    std::vector<int64_t> y_dims = phi::vectorize(Y->dims());
    std::vector<int64_t> out_dims = phi::vectorize(Out->dims());
150 151 152
    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int out_ndim = out_dims.size();
153

154
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
155

156 157 158
    // Case 1: [K] x [K] = [1]
    if (x_ndim == 1 && y_ndim == 1) {
      PADDLE_ENFORCE_EQ(
159 160
          X->numel(),
          Y->numel(),
161 162 163 164
          platform::errors::InvalidArgument(
              "X's numbers must be equal to Y's numbers,"
              "when X/Y's dims =1. But received X has [%d] elements,"
              "received Y has [%d] elements",
165 166
              X->numel(),
              Y->numel()));
167 168
      Out->Resize({1});
      Out->mutable_data<T>(ctx.GetPlace());
169

170
      const auto& runner = NpuOpRunner("Dot", {*X, *Y}, {*Out});
171
      runner.Run(stream);
172 173 174 175 176 177 178 179 180 181
      return;
    }

    // Resize dim 1 to 2
    Tensor x_temp, y_temp;
    x_temp.ShareDataWith(*X);
    y_temp.ShareDataWith(*Y);
    if (x_ndim == 1) {
      x_dims.insert(x_dims.begin(), 1);
      out_dims.insert(out_dims.end() - 1, 1);
182
      x_temp.Resize(phi::make_ddim(x_dims));
183 184 185 186 187 188
      x_ndim = 2;
      out_ndim += 1;
    }
    if (y_ndim == 1) {
      y_dims.push_back(1);
      out_dims.push_back(1);
189
      y_temp.Resize(phi::make_ddim(y_dims));
190 191 192 193 194 195
      y_ndim = 2;
      out_ndim += 1;
    }

    const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
    if (trans_y) {
196 197 198 199 200 201 202 203 204 205
      PADDLE_ENFORCE_EQ(
          y_dims[y_ndim - 1],
          K,
          platform::errors::InvalidArgument("Input(Y) has error dim."
                                            "Y'dims[%d] must be equal to %d"
                                            "But received Y'dims[%d] is %d",
                                            y_ndim - 1,
                                            K,
                                            y_ndim - 1,
                                            y_dims[y_ndim - 1]));
206
    } else {
207 208 209 210 211 212 213 214 215 216
      PADDLE_ENFORCE_EQ(
          y_dims[y_ndim - 2],
          K,
          platform::errors::InvalidArgument("Input(Y) has error dim."
                                            "Y'dims[%d] must be equal to %d"
                                            "But received Y'dims[%d] is %d",
                                            y_ndim - 2,
                                            K,
                                            y_ndim - 2,
                                            y_dims[y_ndim - 2]));
217
    }
218 219 220 221 222 223 224 225 226 227 228

    // Case 2: [M, K] x [K, N] = [M, N]
    if (x_ndim == 2 && y_ndim == 2) {
      MatMul2D<T>(ctx, stream, x_temp, y_temp, Out, trans_x, trans_y);
      return;
    }

    // Case 3: [B, M, K] x [K, N] =  [B, M, N], when trans_x = false
    // Equal: [B * M, K] x [K, N] = [B * M, N] => [B, M, N]
    if (trans_x == false && y_ndim == 2) {
      std::vector<int64_t> vec_dim = {x_temp.numel() / K, K};
229
      x_temp.Resize(phi::make_ddim(vec_dim));
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
      MatMul2D<T>(ctx, stream, x_temp, y_temp, Out, trans_x, trans_y);
      return;
    }

    // Case 4: [B, M, K] x  [B, K, N] = [B, M, N]
    std::vector<int64_t> x_broadcast_dims(out_ndim, 1);
    std::vector<int64_t> y_broadcast_dims(out_ndim, 1);
    std::copy(out_dims.begin(), out_dims.end() - 2, x_broadcast_dims.begin());
    std::copy(out_dims.begin(), out_dims.end() - 2, y_broadcast_dims.begin());
    std::copy(x_dims.end() - 2, x_dims.end(), x_broadcast_dims.end() - 2);
    std::copy(y_dims.end() - 2, y_dims.end(), y_broadcast_dims.end() - 2);

    Tensor x_temp_brd(X->type());
    if (x_dims == x_broadcast_dims) {
      x_temp_brd.ShareDataWith(*X);
245
      x_temp_brd.Resize(phi::make_ddim(x_broadcast_dims));
246
    } else {
247
      x_temp_brd.Resize(phi::make_ddim(x_broadcast_dims));
248 249 250 251 252 253 254 255 256 257 258 259
      x_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(x_temp)
          .AddInput(std::move(x_broadcast_dims))
          .AddOutput(x_temp_brd)
          .Run(stream);
    }

    Tensor y_temp_brd(Y->type());
    if (y_dims == y_broadcast_dims) {
      y_temp_brd.ShareDataWith(*Y);
260
      y_temp_brd.Resize(phi::make_ddim(y_broadcast_dims));
261
    } else {
262
      y_temp_brd.Resize(phi::make_ddim(y_broadcast_dims));
263 264 265 266 267 268 269 270 271
      y_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(y_temp)
          .AddInput(std::move(y_broadcast_dims))
          .AddOutput(y_temp_brd)
          .Run(stream);
    }
    MatMulND<T>(ctx, stream, x_temp_brd, y_temp_brd, Out, trans_x, trans_y);
272 273 274
  }
};

275
template <typename T>
276 277 278
class MatMulV2GradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
279 280 281 282 283
    auto* X = ctx.Input<phi::DenseTensor>("X");
    auto* Y = ctx.Input<phi::DenseTensor>("Y");
    auto* dOut = ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto* dX = ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
    auto* dY = ctx.Output<phi::DenseTensor>(framework::GradVarName("Y"));
284 285
    const bool trans_x = ctx.Attr<bool>("trans_x");
    const bool trans_y = ctx.Attr<bool>("trans_y");
286

287 288 289
    std::vector<int64_t> x_dims = phi::vectorize(X->dims());
    std::vector<int64_t> y_dims = phi::vectorize(Y->dims());
    std::vector<int64_t> out_dims = phi::vectorize(dOut->dims());
290 291 292
    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int out_ndim = out_dims.size();
293

294
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
295

296 297 298 299 300 301 302 303 304 305 306
    // Case 1: [K] x [K] = [1]
    if (x_ndim == 1 && y_ndim == 1) {
      Tensor dout_temp(dOut->type());
      dout_temp.Resize(X->dims());
      dout_temp.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner;
      runner.SetType("BroadcastTo")
          .AddInput(*dOut)
          .AddInput(std::move(x_dims))
          .AddOutput(dout_temp)
          .Run(stream);
307

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
      if (dX) {
        dX->mutable_data<T>(ctx.GetPlace());
        const auto& runner_dx = NpuOpRunner("Mul", {dout_temp, *Y}, {*dX}, {});
        runner_dx.Run(stream);
      }
      if (dY) {
        dY->mutable_data<T>(ctx.GetPlace());
        const auto& runner_dy = NpuOpRunner("Mul", {dout_temp, *X}, {*dY}, {});
        runner_dy.Run(stream);
      }
      return;
    }

    // Resize dim 1 to 2
    Tensor x_temp, y_temp, dout_temp;
    x_temp.ShareDataWith(*X);
    y_temp.ShareDataWith(*Y);
    dout_temp.ShareDataWith(*dOut);
    if (x_ndim == 1) {
      x_dims.insert(x_dims.begin(), 1);
      out_dims.insert(out_dims.end() - 1, 1);
329 330
      x_temp.Resize(phi::make_ddim(x_dims));
      dout_temp.Resize(phi::make_ddim(out_dims));
331 332 333 334 335 336
      x_ndim = 2;
      out_ndim += 1;
    }
    if (y_ndim == 1) {
      y_dims.push_back(1);
      out_dims.push_back(1);
337 338
      y_temp.Resize(phi::make_ddim(y_dims));
      dout_temp.Resize(phi::make_ddim(out_dims));
339 340 341 342 343 344 345
      y_ndim = 2;
      out_ndim += 1;
    }

    // Case 2: [M, K] x [K, N] = [M, N]
    if (out_ndim == 2) {
      if (dX) {
346
        dX->Resize(phi::make_ddim(x_dims));
347 348 349 350
        if (trans_x) {
          MatMul2D<T>(ctx, stream, y_temp, dout_temp, dX, trans_y, true);
        } else {
          MatMul2D<T>(ctx, stream, dout_temp, y_temp, dX, false, !trans_y);
351
        }
352
        dX->Resize(X->dims());
353
      }
354
      if (dY) {
355
        dY->Resize(phi::make_ddim(y_dims));
356 357 358 359
        if (trans_y) {
          MatMul2D<T>(ctx, stream, dout_temp, x_temp, dY, true, trans_x);
        } else {
          MatMul2D<T>(ctx, stream, x_temp, dout_temp, dY, !trans_x, false);
360
        }
361 362 363 364 365 366 367
        dY->Resize(Y->dims());
      }
      return;
    }

    const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
    const int N = trans_y ? y_dims[y_ndim - 2] : y_dims[y_ndim - 1];
368

369 370 371 372 373
    // Case 3: [B, M, K] x [K, N] =  [B, M, N], when trans_x = false
    // Equal: [B * M, K] x [K, N] = [B * M, N] => [B, M, N]
    if (trans_x == false && y_ndim == 2) {
      std::vector<int64_t> x_vec_dim = {x_temp.numel() / K, K};
      dout_temp.Resize(
374
          phi::make_ddim(std::vector<int64_t>{dout_temp.numel() / N, N}));
375
      if (dX) {
376
        dX->Resize(phi::make_ddim(x_vec_dim));
377 378 379 380
        MatMul2D<T>(ctx, stream, dout_temp, y_temp, dX, false, !trans_y);
        dX->Resize(X->dims());
      }
      if (dY) {
381
        x_temp.Resize(phi::make_ddim(x_vec_dim));
382 383 384 385
        if (trans_y) {
          MatMul2D<T>(ctx, stream, dout_temp, x_temp, dY, true, false);
        } else {
          MatMul2D<T>(ctx, stream, x_temp, dout_temp, dY, true, false);
386
        }
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
      }
      return;
    }

    // Case 4: [B, M, K] x  [B, K, N] = [B, M, N]
    std::vector<int64_t> x_broadcast_dims(out_ndim, 1);
    std::vector<int64_t> y_broadcast_dims(out_ndim, 1);
    std::copy(out_dims.begin(), out_dims.end() - 2, x_broadcast_dims.begin());
    std::copy(out_dims.begin(), out_dims.end() - 2, y_broadcast_dims.begin());
    std::copy(x_dims.end() - 2, x_dims.end(), x_broadcast_dims.end() - 2);
    std::copy(y_dims.end() - 2, y_dims.end(), y_broadcast_dims.end() - 2);

    Tensor x_temp_brd(X->type());
    if (x_dims == x_broadcast_dims) {
      x_temp_brd.ShareDataWith(*X);
402
      x_temp_brd.Resize(phi::make_ddim(x_broadcast_dims));
403
    } else {
404
      x_temp_brd.Resize(phi::make_ddim(x_broadcast_dims));
405 406 407 408 409 410 411 412
      x_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(x_temp)
          .AddInput(std::move(x_broadcast_dims))
          .AddOutput(x_temp_brd)
          .Run(stream);
    }
413

414 415 416
    Tensor y_temp_brd(Y->type());
    if (y_dims == y_broadcast_dims) {
      y_temp_brd.ShareDataWith(*Y);
417
      y_temp_brd.Resize(phi::make_ddim(y_broadcast_dims));
418
    } else {
419
      y_temp_brd.Resize(phi::make_ddim(y_broadcast_dims));
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
      y_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(y_temp)
          .AddInput(std::move(y_broadcast_dims))
          .AddOutput(y_temp_brd)
          .Run(stream);
    }

    if (dX) {
      if (x_dims == x_broadcast_dims) {
        if (trans_x) {
          MatMulND<T>(ctx, stream, y_temp_brd, dout_temp, dX, trans_y, true);
        } else {
          MatMulND<T>(ctx, stream, dout_temp, y_temp_brd, dX, false, !trans_y);
435
        }
436 437
      } else {
        Tensor dx_temp(X->type());
438
        dx_temp.Resize(phi::make_ddim(x_broadcast_dims));
439
        if (trans_x) {
440 441
          MatMulND<T>(
              ctx, stream, y_temp_brd, dout_temp, &dx_temp, trans_y, true);
442
        } else {
443 444
          MatMulND<T>(
              ctx, stream, dout_temp, y_temp_brd, &dx_temp, false, !trans_y);
445
        }
446 447 448 449 450 451 452 453 454 455 456 457
        ReduceDims<T>(ctx, stream, x_dims, x_broadcast_dims, dx_temp, dX);
      }
    }
    if (dY) {
      if (y_dims == y_broadcast_dims) {
        if (trans_y) {
          MatMulND<T>(ctx, stream, dout_temp, x_temp_brd, dY, true, trans_x);
        } else {
          MatMulND<T>(ctx, stream, x_temp_brd, dout_temp, dY, !trans_x, false);
        }
      } else {
        Tensor dy_temp(Y->type());
458
        dy_temp.Resize(phi::make_ddim(y_broadcast_dims));
459
        if (trans_y) {
460 461
          MatMulND<T>(
              ctx, stream, dout_temp, x_temp_brd, &dy_temp, true, trans_x);
462
        } else {
463 464
          MatMulND<T>(
              ctx, stream, x_temp_brd, dout_temp, &dy_temp, !trans_x, false);
465 466
        }
        ReduceDims<T>(ctx, stream, y_dims, y_broadcast_dims, dy_temp, dY);
467 468 469 470
      }
    }
  }
};
471

472 473 474 475 476
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

477 478
REGISTER_OP_NPU_KERNEL(matmul_v2,
                       ops::MatMulV2NPUKernel<float>,
479
                       ops::MatMulV2NPUKernel<paddle::platform::float16>);
480 481
REGISTER_OP_NPU_KERNEL(matmul_v2_grad,
                       ops::MatMulV2GradNPUKernel<float>,
482
                       ops::MatMulV2GradNPUKernel<paddle::platform::float16>);