matmul_v2_op_npu.cc 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/matmul_v2_op.h"
19
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
using Tensor = framework::Tensor;
using NPUDeviceContext = platform::NPUDeviceContext;

template <typename T>
static void MatMul2D(const framework::ExecutionContext& ctx,
                     const aclrtStream& stream, const Tensor& X,
                     const Tensor& Y, Tensor* Out, const bool trans_x,
                     const bool trans_y) {
  Out->mutable_data<T>(ctx.GetPlace());
  const auto& runner =
      NpuOpRunner("MatMul", {X, Y}, {*Out},
                  {{"transpose_x1", trans_x}, {"transpose_x2", trans_y}});
  runner.Run(stream);
}

template <typename T>
static void MatMulND(const framework::ExecutionContext& ctx,
                     const aclrtStream& stream, const Tensor& X,
                     const Tensor& Y, Tensor* Out, const bool trans_x,
                     const bool trans_y) {
  Out->mutable_data<T>(ctx.GetPlace());
  const auto& runner = NpuOpRunner("BatchMatMul", {X, Y}, {*Out},
                                   {{"adj_x1", trans_x}, {"adj_x2", trans_y}});
  runner.Run(stream);
}

template <typename T>
static void ReduceDims(const framework::ExecutionContext& ctx,
                       const aclrtStream& stream,
                       const std::vector<int64_t>& dims,
                       const std::vector<int64_t>& brd_dims, const Tensor& in,
                       Tensor* out) {
  std::vector<int64_t> axes;
  int64_t size = brd_dims.size();
  int64_t diff = brd_dims.size() - dims.size();
  for (int64_t i = 0; i < size; ++i) {
    if (i < diff) {
      axes.push_back(i);
      continue;
    }
    if (brd_dims[i] > dims[i - diff]) {
      axes.push_back(i);
    }
  }
  out->mutable_data<T>(ctx.GetPlace());
  const auto& runner = NpuOpRunner("ReduceSumD", {in}, {*out},
                                   {{"axes", axes}, {"keep_dims", false}});
  runner.Run(stream);
}

template <typename T>
75 76 77
class MatMulV2NPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
78 79 80 81 82 83
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Output<Tensor>("Out");
    const bool trans_x = ctx.Attr<bool>("trans_x");
    const bool trans_y = ctx.Attr<bool>("trans_y");

84 85 86
    std::vector<int64_t> x_dims = pten::vectorize(X->dims());
    std::vector<int64_t> y_dims = pten::vectorize(Y->dims());
    std::vector<int64_t> out_dims = pten::vectorize(Out->dims());
87 88 89
    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int out_ndim = out_dims.size();
90

91
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
92

93 94 95 96 97 98 99 100 101 102 103
    // Case 1: [K] x [K] = [1]
    if (x_ndim == 1 && y_ndim == 1) {
      PADDLE_ENFORCE_EQ(
          X->numel(), Y->numel(),
          platform::errors::InvalidArgument(
              "X's numbers must be equal to Y's numbers,"
              "when X/Y's dims =1. But received X has [%d] elements,"
              "received Y has [%d] elements",
              X->numel(), Y->numel()));
      Out->Resize({1});
      Out->mutable_data<T>(ctx.GetPlace());
104

105
      const auto& runner = NpuOpRunner("Dot", {*X, *Y}, {*Out});
106
      runner.Run(stream);
107 108 109 110 111 112 113 114 115 116
      return;
    }

    // Resize dim 1 to 2
    Tensor x_temp, y_temp;
    x_temp.ShareDataWith(*X);
    y_temp.ShareDataWith(*Y);
    if (x_ndim == 1) {
      x_dims.insert(x_dims.begin(), 1);
      out_dims.insert(out_dims.end() - 1, 1);
117
      x_temp.Resize(pten::make_ddim(x_dims));
118 119 120 121 122 123
      x_ndim = 2;
      out_ndim += 1;
    }
    if (y_ndim == 1) {
      y_dims.push_back(1);
      out_dims.push_back(1);
124
      y_temp.Resize(pten::make_ddim(y_dims));
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
      y_ndim = 2;
      out_ndim += 1;
    }

    const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
    if (trans_y) {
      PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], K,
                        platform::errors::InvalidArgument(
                            "Input(Y) has error dim."
                            "Y'dims[%d] must be equal to %d"
                            "But received Y'dims[%d] is %d",
                            y_ndim - 1, K, y_ndim - 1, y_dims[y_ndim - 1]));
    } else {
      PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], K,
                        platform::errors::InvalidArgument(
                            "Input(Y) has error dim."
                            "Y'dims[%d] must be equal to %d"
                            "But received Y'dims[%d] is %d",
                            y_ndim - 2, K, y_ndim - 2, y_dims[y_ndim - 2]));
144
    }
145 146 147 148 149 150 151 152 153 154 155

    // Case 2: [M, K] x [K, N] = [M, N]
    if (x_ndim == 2 && y_ndim == 2) {
      MatMul2D<T>(ctx, stream, x_temp, y_temp, Out, trans_x, trans_y);
      return;
    }

    // Case 3: [B, M, K] x [K, N] =  [B, M, N], when trans_x = false
    // Equal: [B * M, K] x [K, N] = [B * M, N] => [B, M, N]
    if (trans_x == false && y_ndim == 2) {
      std::vector<int64_t> vec_dim = {x_temp.numel() / K, K};
156
      x_temp.Resize(pten::make_ddim(vec_dim));
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
      MatMul2D<T>(ctx, stream, x_temp, y_temp, Out, trans_x, trans_y);
      return;
    }

    // Case 4: [B, M, K] x  [B, K, N] = [B, M, N]
    std::vector<int64_t> x_broadcast_dims(out_ndim, 1);
    std::vector<int64_t> y_broadcast_dims(out_ndim, 1);
    std::copy(out_dims.begin(), out_dims.end() - 2, x_broadcast_dims.begin());
    std::copy(out_dims.begin(), out_dims.end() - 2, y_broadcast_dims.begin());
    std::copy(x_dims.end() - 2, x_dims.end(), x_broadcast_dims.end() - 2);
    std::copy(y_dims.end() - 2, y_dims.end(), y_broadcast_dims.end() - 2);

    Tensor x_temp_brd(X->type());
    if (x_dims == x_broadcast_dims) {
      x_temp_brd.ShareDataWith(*X);
172
      x_temp_brd.Resize(pten::make_ddim(x_broadcast_dims));
173
    } else {
174
      x_temp_brd.Resize(pten::make_ddim(x_broadcast_dims));
175 176 177 178 179 180 181 182 183 184 185 186
      x_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(x_temp)
          .AddInput(std::move(x_broadcast_dims))
          .AddOutput(x_temp_brd)
          .Run(stream);
    }

    Tensor y_temp_brd(Y->type());
    if (y_dims == y_broadcast_dims) {
      y_temp_brd.ShareDataWith(*Y);
187
      y_temp_brd.Resize(pten::make_ddim(y_broadcast_dims));
188
    } else {
189
      y_temp_brd.Resize(pten::make_ddim(y_broadcast_dims));
190 191 192 193 194 195 196 197 198
      y_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(y_temp)
          .AddInput(std::move(y_broadcast_dims))
          .AddOutput(y_temp_brd)
          .Run(stream);
    }
    MatMulND<T>(ctx, stream, x_temp_brd, y_temp_brd, Out, trans_x, trans_y);
199 200 201
  }
};

202
template <typename T>
203 204 205
class MatMulV2GradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
206 207 208 209 210 211 212
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* dOut = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
    const bool trans_x = ctx.Attr<bool>("trans_x");
    const bool trans_y = ctx.Attr<bool>("trans_y");
213

214 215 216
    std::vector<int64_t> x_dims = pten::vectorize(X->dims());
    std::vector<int64_t> y_dims = pten::vectorize(Y->dims());
    std::vector<int64_t> out_dims = pten::vectorize(dOut->dims());
217 218 219
    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int out_ndim = out_dims.size();
220

221
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
222

223 224 225 226 227 228 229 230 231 232 233
    // Case 1: [K] x [K] = [1]
    if (x_ndim == 1 && y_ndim == 1) {
      Tensor dout_temp(dOut->type());
      dout_temp.Resize(X->dims());
      dout_temp.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner;
      runner.SetType("BroadcastTo")
          .AddInput(*dOut)
          .AddInput(std::move(x_dims))
          .AddOutput(dout_temp)
          .Run(stream);
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
      if (dX) {
        dX->mutable_data<T>(ctx.GetPlace());
        const auto& runner_dx = NpuOpRunner("Mul", {dout_temp, *Y}, {*dX}, {});
        runner_dx.Run(stream);
      }
      if (dY) {
        dY->mutable_data<T>(ctx.GetPlace());
        const auto& runner_dy = NpuOpRunner("Mul", {dout_temp, *X}, {*dY}, {});
        runner_dy.Run(stream);
      }
      return;
    }

    // Resize dim 1 to 2
    Tensor x_temp, y_temp, dout_temp;
    x_temp.ShareDataWith(*X);
    y_temp.ShareDataWith(*Y);
    dout_temp.ShareDataWith(*dOut);
    if (x_ndim == 1) {
      x_dims.insert(x_dims.begin(), 1);
      out_dims.insert(out_dims.end() - 1, 1);
256 257
      x_temp.Resize(pten::make_ddim(x_dims));
      dout_temp.Resize(pten::make_ddim(out_dims));
258 259 260 261 262 263
      x_ndim = 2;
      out_ndim += 1;
    }
    if (y_ndim == 1) {
      y_dims.push_back(1);
      out_dims.push_back(1);
264 265
      y_temp.Resize(pten::make_ddim(y_dims));
      dout_temp.Resize(pten::make_ddim(out_dims));
266 267 268 269 270 271 272
      y_ndim = 2;
      out_ndim += 1;
    }

    // Case 2: [M, K] x [K, N] = [M, N]
    if (out_ndim == 2) {
      if (dX) {
273
        dX->Resize(pten::make_ddim(x_dims));
274 275 276 277
        if (trans_x) {
          MatMul2D<T>(ctx, stream, y_temp, dout_temp, dX, trans_y, true);
        } else {
          MatMul2D<T>(ctx, stream, dout_temp, y_temp, dX, false, !trans_y);
278
        }
279
        dX->Resize(X->dims());
280
      }
281
      if (dY) {
282
        dY->Resize(pten::make_ddim(y_dims));
283 284 285 286
        if (trans_y) {
          MatMul2D<T>(ctx, stream, dout_temp, x_temp, dY, true, trans_x);
        } else {
          MatMul2D<T>(ctx, stream, x_temp, dout_temp, dY, !trans_x, false);
287
        }
288 289 290 291 292 293 294
        dY->Resize(Y->dims());
      }
      return;
    }

    const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
    const int N = trans_y ? y_dims[y_ndim - 2] : y_dims[y_ndim - 1];
295

296 297 298 299 300
    // Case 3: [B, M, K] x [K, N] =  [B, M, N], when trans_x = false
    // Equal: [B * M, K] x [K, N] = [B * M, N] => [B, M, N]
    if (trans_x == false && y_ndim == 2) {
      std::vector<int64_t> x_vec_dim = {x_temp.numel() / K, K};
      dout_temp.Resize(
301
          pten::make_ddim(std::vector<int64_t>{dout_temp.numel() / N, N}));
302
      if (dX) {
303
        dX->Resize(pten::make_ddim(x_vec_dim));
304 305 306 307
        MatMul2D<T>(ctx, stream, dout_temp, y_temp, dX, false, !trans_y);
        dX->Resize(X->dims());
      }
      if (dY) {
308
        x_temp.Resize(pten::make_ddim(x_vec_dim));
309 310 311 312
        if (trans_y) {
          MatMul2D<T>(ctx, stream, dout_temp, x_temp, dY, true, false);
        } else {
          MatMul2D<T>(ctx, stream, x_temp, dout_temp, dY, true, false);
313
        }
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
      }
      return;
    }

    // Case 4: [B, M, K] x  [B, K, N] = [B, M, N]
    std::vector<int64_t> x_broadcast_dims(out_ndim, 1);
    std::vector<int64_t> y_broadcast_dims(out_ndim, 1);
    std::copy(out_dims.begin(), out_dims.end() - 2, x_broadcast_dims.begin());
    std::copy(out_dims.begin(), out_dims.end() - 2, y_broadcast_dims.begin());
    std::copy(x_dims.end() - 2, x_dims.end(), x_broadcast_dims.end() - 2);
    std::copy(y_dims.end() - 2, y_dims.end(), y_broadcast_dims.end() - 2);

    Tensor x_temp_brd(X->type());
    if (x_dims == x_broadcast_dims) {
      x_temp_brd.ShareDataWith(*X);
329
      x_temp_brd.Resize(pten::make_ddim(x_broadcast_dims));
330
    } else {
331
      x_temp_brd.Resize(pten::make_ddim(x_broadcast_dims));
332 333 334 335 336 337 338 339
      x_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(x_temp)
          .AddInput(std::move(x_broadcast_dims))
          .AddOutput(x_temp_brd)
          .Run(stream);
    }
340

341 342 343
    Tensor y_temp_brd(Y->type());
    if (y_dims == y_broadcast_dims) {
      y_temp_brd.ShareDataWith(*Y);
344
      y_temp_brd.Resize(pten::make_ddim(y_broadcast_dims));
345
    } else {
346
      y_temp_brd.Resize(pten::make_ddim(y_broadcast_dims));
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
      y_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(y_temp)
          .AddInput(std::move(y_broadcast_dims))
          .AddOutput(y_temp_brd)
          .Run(stream);
    }

    if (dX) {
      if (x_dims == x_broadcast_dims) {
        if (trans_x) {
          MatMulND<T>(ctx, stream, y_temp_brd, dout_temp, dX, trans_y, true);
        } else {
          MatMulND<T>(ctx, stream, dout_temp, y_temp_brd, dX, false, !trans_y);
362
        }
363 364
      } else {
        Tensor dx_temp(X->type());
365
        dx_temp.Resize(pten::make_ddim(x_broadcast_dims));
366 367 368 369 370 371
        if (trans_x) {
          MatMulND<T>(ctx, stream, y_temp_brd, dout_temp, &dx_temp, trans_y,
                      true);
        } else {
          MatMulND<T>(ctx, stream, dout_temp, y_temp_brd, &dx_temp, false,
                      !trans_y);
372
        }
373 374 375 376 377 378 379 380 381 382 383 384
        ReduceDims<T>(ctx, stream, x_dims, x_broadcast_dims, dx_temp, dX);
      }
    }
    if (dY) {
      if (y_dims == y_broadcast_dims) {
        if (trans_y) {
          MatMulND<T>(ctx, stream, dout_temp, x_temp_brd, dY, true, trans_x);
        } else {
          MatMulND<T>(ctx, stream, x_temp_brd, dout_temp, dY, !trans_x, false);
        }
      } else {
        Tensor dy_temp(Y->type());
385
        dy_temp.Resize(pten::make_ddim(y_broadcast_dims));
386 387 388 389 390 391 392 393
        if (trans_y) {
          MatMulND<T>(ctx, stream, dout_temp, x_temp_brd, &dy_temp, true,
                      trans_x);
        } else {
          MatMulND<T>(ctx, stream, x_temp_brd, dout_temp, &dy_temp, !trans_x,
                      false);
        }
        ReduceDims<T>(ctx, stream, y_dims, y_broadcast_dims, dy_temp, dY);
394 395 396 397
      }
    }
  }
};
398

399 400 401 402 403
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

404 405 406 407
REGISTER_OP_NPU_KERNEL(matmul_v2, ops::MatMulV2NPUKernel<float>,
                       ops::MatMulV2NPUKernel<paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(matmul_v2_grad, ops::MatMulV2GradNPUKernel<float>,
                       ops::MatMulV2GradNPUKernel<paddle::platform::float16>);