collect_fpn_proposals_op.cu 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
  Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
      http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#ifdef __NVCC__
13
#include "cub/cub.cuh"
14 15 16
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
17
namespace cub = hipcub;
18 19 20
#endif

#include <paddle/fluid/memory/allocation/allocator.h>
21

22 23 24 25 26 27 28 29
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/detection/collect_fpn_proposals_op.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/platform/for_range.h"
30
#include "paddle/phi/backends/gpu/gpu_primitives.h"
31
#include "paddle/phi/kernels/funcs/gather.cu.h"
32 33 34 35

namespace paddle {
namespace operators {

36
using Tensor = phi::DenseTensor;
37 38 39 40 41 42 43 44 45 46 47

static constexpr int kNumCUDAThreads = 64;
static constexpr int kNumMaxinumNumBlocks = 4096;

const int kBBoxSize = 4;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

48 49
static __global__ void GetLengthLoD(const int nthreads,
                                    const int* batch_ids,
50
                                    int* length_lod) {
51
  CUDA_KERNEL_LOOP(i, nthreads) {
52
    phi::CudaAtomicAdd(length_lod + batch_ids[i], 1);
53 54 55 56 57 58 59
  }
}

template <typename DeviceContext, typename T>
class GPUCollectFpnProposalsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
60 61 62
    const auto roi_ins = ctx.MultiInput<phi::DenseTensor>("MultiLevelRois");
    const auto score_ins = ctx.MultiInput<phi::DenseTensor>("MultiLevelScores");
    auto fpn_rois = ctx.Output<phi::DenseTensor>("FpnRois");
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    const int post_nms_topN = ctx.Attr<int>("post_nms_topN");

    // concat inputs along axis = 0
    int roi_offset = 0;
    int score_offset = 0;
    int total_roi_num = 0;
    for (size_t i = 0; i < roi_ins.size(); ++i) {
      total_roi_num += roi_ins[i]->dims()[0];
    }

    int real_post_num = min(post_nms_topN, total_roi_num);
    fpn_rois->mutable_data<T>({real_post_num, kBBoxSize}, dev_ctx.GetPlace());
    Tensor concat_rois;
    Tensor concat_scores;
    T* concat_rois_data = concat_rois.mutable_data<T>(
        {total_roi_num, kBBoxSize}, dev_ctx.GetPlace());
    T* concat_scores_data =
        concat_scores.mutable_data<T>({total_roi_num, 1}, dev_ctx.GetPlace());
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({total_roi_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
    int index = 0;
    int lod_size;
89
    auto place = dev_ctx.GetPlace();
90

91
    auto multi_rois_num = ctx.MultiInput<phi::DenseTensor>("MultiLevelRoIsNum");
92 93 94
    for (size_t i = 0; i < roi_ins.size(); ++i) {
      auto roi_in = roi_ins[i];
      auto score_in = score_ins[i];
95
      if (multi_rois_num.size() > 0) {
96
        phi::DenseTensor temp;
97 98
        paddle::framework::TensorCopySync(
            *multi_rois_num[i], platform::CPUPlace(), &temp);
99 100 101 102 103 104 105 106 107 108 109 110 111 112
        const int* length_in = temp.data<int>();
        lod_size = multi_rois_num[i]->numel();
        for (size_t n = 0; n < lod_size; ++n) {
          for (size_t j = 0; j < length_in[n]; ++j) {
            roi_batch_id_data[index++] = n;
          }
        }
      } else {
        auto length_in = roi_in->lod().back();
        lod_size = length_in.size() - 1;
        for (size_t n = 0; n < lod_size; ++n) {
          for (size_t j = length_in[n]; j < length_in[n + 1]; ++j) {
            roi_batch_id_data[index++] = n;
          }
113 114 115
        }
      }

116 117 118 119 120
      memory::Copy(place,
                   concat_rois_data + roi_offset,
                   place,
                   roi_in->data<T>(),
                   roi_in->numel() * sizeof(T),
121
                   dev_ctx.stream());
122 123 124 125 126
      memory::Copy(place,
                   concat_scores_data + score_offset,
                   place,
                   score_in->data<T>(),
                   score_in->numel() * sizeof(T),
127 128 129 130 131 132 133
                   dev_ctx.stream());
      roi_offset += roi_in->numel();
      score_offset += score_in->numel();
    }

    // copy batch id list to GPU
    Tensor roi_batch_id_list_gpu;
134 135
    framework::TensorCopy(
        roi_batch_id_list, dev_ctx.GetPlace(), &roi_batch_id_list_gpu);
136 137 138 139

    Tensor index_in_t;
    int* idx_in =
        index_in_t.mutable_data<int>({total_roi_num}, dev_ctx.GetPlace());
L
Leo Chen 已提交
140
    platform::ForRange<phi::GPUContext> for_range_total(dev_ctx, total_roi_num);
141 142 143 144 145 146 147 148 149 150 151
    for_range_total(RangeInitFunctor{0, 1, idx_in});

    Tensor keys_out_t;
    T* keys_out =
        keys_out_t.mutable_data<T>({total_roi_num}, dev_ctx.GetPlace());
    Tensor index_out_t;
    int* idx_out =
        index_out_t.mutable_data<int>({total_roi_num}, dev_ctx.GetPlace());

    // Determine temporary device storage requirements
    size_t temp_storage_bytes = 0;
152 153 154 155 156 157 158 159 160 161
    cub::DeviceRadixSort::SortPairsDescending<T, int>(nullptr,
                                                      temp_storage_bytes,
                                                      concat_scores.data<T>(),
                                                      keys_out,
                                                      idx_in,
                                                      idx_out,
                                                      total_roi_num,
                                                      0,
                                                      sizeof(T) * 8,
                                                      dev_ctx.stream());
162
    // Allocate temporary storage
163
    auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);
164

165 166
    // Run sorting operation
    // sort score to get corresponding index
167 168 169 170 171 172 173 174 175 176
    cub::DeviceRadixSort::SortPairsDescending<T, int>(d_temp_storage->ptr(),
                                                      temp_storage_bytes,
                                                      concat_scores.data<T>(),
                                                      keys_out,
                                                      idx_in,
                                                      idx_out,
                                                      total_roi_num,
                                                      0,
                                                      sizeof(T) * 8,
                                                      dev_ctx.stream());
177 178 179 180 181
    index_out_t.Resize({real_post_num});
    Tensor sorted_rois;
    sorted_rois.mutable_data<T>({real_post_num, kBBoxSize}, dev_ctx.GetPlace());
    Tensor sorted_batch_id;
    sorted_batch_id.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
182
    phi::funcs::GPUGather<T>(dev_ctx, concat_rois, index_out_t, &sorted_rois);
183 184
    phi::funcs::GPUGather<int>(
        dev_ctx, roi_batch_id_list_gpu, index_out_t, &sorted_batch_id);
185 186 187 188

    Tensor batch_index_t;
    int* batch_idx_in =
        batch_index_t.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
L
Leo Chen 已提交
189
    platform::ForRange<phi::GPUContext> for_range_post(dev_ctx, real_post_num);
190 191 192 193 194 195 196
    for_range_post(RangeInitFunctor{0, 1, batch_idx_in});

    Tensor out_id_t;
    int* out_id_data =
        out_id_t.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
    // Determine temporary device storage requirements
    temp_storage_bytes = 0;
197 198 199 200 201 202 203 204 205 206
    cub::DeviceRadixSort::SortPairs<int, int>(nullptr,
                                              temp_storage_bytes,
                                              sorted_batch_id.data<int>(),
                                              out_id_data,
                                              batch_idx_in,
                                              index_out_t.data<int>(),
                                              real_post_num,
                                              0,
                                              sizeof(int) * 8,
                                              dev_ctx.stream());
207
    // Allocate temporary storage
208
    d_temp_storage = memory::Alloc(place, temp_storage_bytes);
209

210 211
    // Run sorting operation
    // sort batch_id to get corresponding index
212 213 214 215 216 217 218 219 220 221
    cub::DeviceRadixSort::SortPairs<int, int>(d_temp_storage->ptr(),
                                              temp_storage_bytes,
                                              sorted_batch_id.data<int>(),
                                              out_id_data,
                                              batch_idx_in,
                                              index_out_t.data<int>(),
                                              real_post_num,
                                              0,
                                              sizeof(int) * 8,
                                              dev_ctx.stream());
222

223
    phi::funcs::GPUGather<T>(dev_ctx, sorted_rois, index_out_t, fpn_rois);
224 225 226 227

    Tensor length_lod;
    int* length_lod_data =
        length_lod.mutable_data<int>({lod_size}, dev_ctx.GetPlace());
L
Leo Chen 已提交
228
    phi::funcs::SetConstant<phi::GPUContext, int> set_zero;
229 230 231 232 233 234
    set_zero(dev_ctx, &length_lod, static_cast<int>(0));

    int blocks = NumBlocks(real_post_num);
    int threads = kNumCUDAThreads;

    // get length-based lod by batch ids
235 236
    GetLengthLoD<<<blocks, threads, 0, dev_ctx.stream()>>>(
        real_post_num, out_id_data, length_lod_data);
237
    std::vector<int> length_lod_cpu(lod_size);
238 239 240 241 242 243
    memory::Copy(platform::CPUPlace(),
                 length_lod_cpu.data(),
                 place,
                 length_lod_data,
                 sizeof(int) * lod_size,
                 dev_ctx.stream());
244 245 246 247 248 249 250
    dev_ctx.Wait();

    std::vector<size_t> offset(1, 0);
    for (int i = 0; i < lod_size; ++i) {
      offset.emplace_back(offset.back() + length_lod_cpu[i]);
    }

251
    if (ctx.HasOutput("RoisNum")) {
252
      auto* rois_num = ctx.Output<phi::DenseTensor>("RoisNum");
253
      int* rois_num_data = rois_num->mutable_data<int>({lod_size}, place);
254 255 256 257 258 259
      memory::Copy(place,
                   rois_num_data,
                   place,
                   length_lod_data,
                   lod_size * sizeof(int),
                   dev_ctx.stream());
260 261
    }

262 263 264 265 266 267 268 269 270 271 272 273
    framework::LoD lod;
    lod.emplace_back(offset);
    fpn_rois->set_lod(lod);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    collect_fpn_proposals,
L
Leo Chen 已提交
274 275
    ops::GPUCollectFpnProposalsOpKernel<phi::GPUContext, float>,
    ops::GPUCollectFpnProposalsOpKernel<phi::GPUContext, double>);