concat_op_mlu.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

template <typename T>
class ConcatMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
25 26
    auto ins = ctx.MultiInput<phi::DenseTensor>("X");
    phi::DenseTensor* out = ctx.Output<phi::DenseTensor>("Out");
27 28 29 30 31 32 33
    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));
    auto axis = ctx.Attr<int>("axis");
    auto ins_size = ins.size();
    bool need_resize_out_dims = false;
    if (ctx.HasInput("AxisTensor")) {
34
      auto* axis_tensor = ctx.Input<phi::DenseTensor>("AxisTensor");
35 36 37 38 39 40 41 42 43 44 45 46 47
      axis = GetDataFromTensor<int>(axis_tensor)[0];
      need_resize_out_dims = true;
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));

    if (need_resize_out_dims) {
      const size_t n = ins.size();
      std::vector<framework::DDim> ins_dims(n);
      for (size_t i = 0; i < n; i++) {
        ins_dims[i] = ins[i]->dims();
      }

48
      framework::DDim out_dims =
49
          phi::funcs::ComputeAndCheckShape(true, ins_dims, axis);
50 51 52 53 54 55 56 57 58 59 60 61 62 63
      out->Resize(out_dims);
    }
    const int axis_t = axis;
    const int ins_size_t = ins_size;
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);

    // mlu should do sth
    // init ins tensors
    std::vector<const void*> inputs;
    std::vector<MLUCnnlTensorDesc> input_descs;
    std::vector<cnnlTensorDescriptor_t> desc_vector;
    for (size_t i = 0; i < ins_size; i++) {
      input_descs.emplace_back(MLUCnnlTensorDesc(
64
          *ins[i], CNNL_LAYOUT_ARRAY, ToCnnlDataType(ins[i]->dtype())));
65 66 67 68
      desc_vector.push_back(input_descs.back().get());
      inputs.push_back(GetBasePtr(ins[i]));
    }
    // init out tensors
69 70
    MLUCnnlTensorDesc output_desc(
        *out, CNNL_LAYOUT_ARRAY, ToCnnlDataType(out->dtype()));
71 72

    // MLU should do sth
73 74 75 76 77 78 79
    MLUCnnl::Concat(ctx,
                    ins_size_t,
                    axis_t,
                    desc_vector.data(),
                    inputs.data(),
                    output_desc.get(),
                    GetBasePtr(out));
80 81
  }
};
82 83 84 85 86

template <typename T>
class ConcatGradMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
87
    auto* out_grad = ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
88
    auto ins = ctx.MultiInput<phi::DenseTensor>("X");
89
    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));
90
    auto outs = ctx.MultiOutput<phi::DenseTensor>(framework::GradVarName("X"));
91 92 93 94 95 96 97 98
    auto axis = ctx.Attr<int>("axis");
    int split_num = ins.size();

    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));

    if (ctx.HasInput("AxisTensor")) {
99
      auto* axis_tensor = ctx.Input<phi::DenseTensor>("AxisTensor");
100 101 102 103 104
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }

    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));
105 106
    PADDLE_ENFORCE_GE(axis,
                      0,
107 108 109 110
                      platform::errors::InvalidArgument(
                          "concat_grad: axis should be larger than or "
                          "equal to 0, but received axis is %d.",
                          axis));
111
    PADDLE_ENFORCE_LT(
112 113
        axis,
        out_grad->dims().size(),
114 115 116 117
        platform::errors::InvalidArgument(
            "concat_grad: axis should be less than ins[0]->dims()!"
            "But received axis is %d, while ins[0]->dims()"
            "size is %d.",
118 119
            axis,
            out_grad->dims().size()));
120 121
    // get output tensor that the name is not kEmptyVarName
    std::vector<void*> outputs_vec;
122
    std::vector<Tensor> tmp_outputs_vec;
123 124 125 126 127 128 129 130 131
    std::vector<MLUCnnlTensorDesc> output_descs;
    std::vector<cnnlTensorDescriptor_t> descs_vec;
    for (size_t j = 0; j < outs.size(); ++j) {
      if (out_var_names[j] != framework::kEmptyVarName &&
          outs[j]->numel() != 0UL) {
        outs[j]->mutable_data<T>(ctx.GetPlace());
        output_descs.emplace_back(MLUCnnlTensorDesc(*outs[j]));
        outputs_vec.push_back(GetBasePtr(outs[j]));
      } else {
132 133 134 135 136
        Tensor tmp_tensor;
        tmp_tensor.mutable_data<T>(ins[j]->dims(), ctx.GetPlace());
        tmp_outputs_vec.push_back(tmp_tensor);
        output_descs.emplace_back(MLUCnnlTensorDesc(*ins[j]));
        outputs_vec.push_back(GetBasePtr(&(tmp_outputs_vec.back())));
137
      }
138
      descs_vec.push_back(output_descs.back().get());
139 140 141
    }

    MLUCnnlTensorDesc out_grad_desc(*out_grad);
142 143 144 145 146 147
    MLUCnnl::Split(ctx,
                   static_cast<int>(split_num),
                   static_cast<int>(axis),
                   out_grad_desc.get(),
                   GetBasePtr(out_grad),
                   descs_vec.data(),
148 149 150
                   outputs_vec.data());
  }
};
151 152 153 154 155
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

156 157
REGISTER_OP_MLU_KERNEL(concat,
                       ops::ConcatMLUKernel<float>,
158 159
                       ops::ConcatMLUKernel<paddle::platform::float16>,
                       ops::ConcatMLUKernel<int64_t>,
160 161
                       ops::ConcatMLUKernel<bool>,
                       ops::ConcatMLUKernel<int>,
162
                       ops::ConcatMLUKernel<uint8_t>);
163 164
REGISTER_OP_MLU_KERNEL(concat_grad,
                       ops::ConcatGradMLUKernel<float>,
165 166 167 168 169
                       ops::ConcatGradMLUKernel<paddle::platform::float16>,
                       ops::ConcatGradMLUKernel<int64_t>,
                       ops::ConcatGradMLUKernel<bool>,
                       ops::ConcatGradMLUKernel<int>,
                       ops::ConcatGradMLUKernel<uint8_t>);