Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ac3dc0bb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ac3dc0bb
编写于
1月 25, 2022
作者:
J
joeqiao12
提交者:
GitHub
1月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add mlu kernel for split and concat (#39020)
* [MLU]add mlu kernel for concat and split op * delete device_context DEPS
上级
20e23e1b
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
631 addition
and
1 deletion
+631
-1
paddle/fluid/operators/concat_op_mlu.cc
paddle/fluid/operators/concat_op_mlu.cc
+85
-0
paddle/fluid/operators/split_op_mlu.cc
paddle/fluid/operators/split_op_mlu.cc
+88
-0
paddle/fluid/platform/device/mlu/CMakeLists.txt
paddle/fluid/platform/device/mlu/CMakeLists.txt
+1
-1
python/paddle/fluid/tests/unittests/mlu/test_concat_op_mlu.py
...on/paddle/fluid/tests/unittests/mlu/test_concat_op_mlu.py
+223
-0
python/paddle/fluid/tests/unittests/mlu/test_split_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_split_op_mlu.py
+234
-0
未找到文件。
paddle/fluid/operators/concat_op_mlu.cc
0 → 100644
浏览文件 @
ac3dc0bb
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ConcatMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
ins
=
ctx
.
MultiInput
<
framework
::
LoDTensor
>
(
"X"
);
framework
::
LoDTensor
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
PADDLE_ENFORCE_NOT_NULL
(
ins
[
0
],
platform
::
errors
::
NotFound
(
"The first input tensor is not initalized."
));
auto
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
auto
ins_size
=
ins
.
size
();
bool
need_resize_out_dims
=
false
;
if
(
ctx
.
HasInput
(
"AxisTensor"
))
{
auto
*
axis_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"AxisTensor"
);
axis
=
GetDataFromTensor
<
int
>
(
axis_tensor
)[
0
];
need_resize_out_dims
=
true
;
}
axis
=
ComputeAxis
(
static_cast
<
int64_t
>
(
axis
),
static_cast
<
int64_t
>
(
ins
[
0
]
->
dims
().
size
()));
if
(
need_resize_out_dims
)
{
const
size_t
n
=
ins
.
size
();
std
::
vector
<
framework
::
DDim
>
ins_dims
(
n
);
for
(
size_t
i
=
0
;
i
<
n
;
i
++
)
{
ins_dims
[
i
]
=
ins
[
i
]
->
dims
();
}
framework
::
DDim
out_dims
=
ComputeAndCheckShape
(
true
,
ins_dims
,
axis
);
out
->
Resize
(
out_dims
);
}
const
int
axis_t
=
axis
;
const
int
ins_size_t
=
ins_size
;
auto
place
=
ctx
.
GetPlace
();
out
->
mutable_data
<
T
>
(
place
);
// mlu should do sth
// init ins tensors
std
::
vector
<
const
void
*>
inputs
;
std
::
vector
<
MLUCnnlTensorDesc
>
input_descs
;
std
::
vector
<
cnnlTensorDescriptor_t
>
desc_vector
;
for
(
size_t
i
=
0
;
i
<
ins_size
;
i
++
)
{
input_descs
.
emplace_back
(
MLUCnnlTensorDesc
(
*
ins
[
i
],
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
ins
[
i
]
->
type
())));
desc_vector
.
push_back
(
input_descs
.
back
().
get
());
inputs
.
push_back
(
GetBasePtr
(
ins
[
i
]));
}
// init out tensors
MLUCnnlTensorDesc
output_desc
(
*
out
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
out
->
type
()));
// MLU should do sth
MLUCnnl
::
Concat
(
ctx
,
ins_size_t
,
axis_t
,
desc_vector
.
data
(),
inputs
.
data
(),
output_desc
.
get
(),
GetBasePtr
(
out
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
concat
,
ops
::
ConcatMLUKernel
<
float
>
,
ops
::
ConcatMLUKernel
<
paddle
::
platform
::
float16
>
,
ops
::
ConcatMLUKernel
<
int64_t
>
,
ops
::
ConcatMLUKernel
<
bool
>
,
ops
::
ConcatMLUKernel
<
int
>
,
ops
::
ConcatMLUKernel
<
uint8_t
>
);
paddle/fluid/operators/split_op_mlu.cc
0 → 100644
浏览文件 @
ac3dc0bb
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/split_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
SplitMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
// init parameter
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Out"
);
int
num
=
ctx
.
Attr
<
int
>
(
"num"
);
std
::
vector
<
int
>
sections
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"sections"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
auto
in_dims
=
in
->
dims
();
auto
out_size
=
outs
.
size
();
auto
num_tensor
=
num
==
0
?
out_size
:
num
;
bool
need_resize_outs_dims
=
false
;
if
(
ctx
.
HasInput
(
"AxisTensor"
))
{
auto
*
axis_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"AxisTensor"
);
axis
=
GetDataFromTensor
(
axis_tensor
)[
0
];
need_resize_outs_dims
=
true
;
}
auto
sections_tensor_list
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"SectionsTensorList"
);
if
(
sections_tensor_list
.
size
()
>
0
)
{
sections
=
GetDataFromTensorList
(
sections_tensor_list
);
need_resize_outs_dims
=
true
;
}
if
(
need_resize_outs_dims
)
{
std
::
vector
<
framework
::
DDim
>
outs_dims
=
UpdateOutsDims
(
true
,
true
,
in_dims
,
num
,
sections
,
axis
,
out_size
);
for
(
size_t
j
=
0
;
j
<
outs
.
size
();
++
j
)
{
outs
[
j
]
->
Resize
(
outs_dims
[
j
]);
}
}
// init out tensors
std
::
vector
<
void
*>
vct_tensor
;
std
::
vector
<
MLUCnnlTensorDesc
>
output_descs
;
std
::
vector
<
cnnlTensorDescriptor_t
>
desc_vector
;
auto
place
=
ctx
.
GetPlace
();
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
i
++
)
{
outs
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
output_descs
.
emplace_back
(
MLUCnnlTensorDesc
(
*
outs
[
i
],
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
outs
[
i
]
->
type
())));
desc_vector
.
push_back
(
output_descs
.
back
().
get
());
vct_tensor
.
push_back
(
GetBasePtr
(
outs
[
i
]));
}
// init in tensors
MLUCnnlTensorDesc
input_desc
(
*
in
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
in
->
type
()));
// MLU should do sth
MLUCnnl
::
Split
(
ctx
,
num_tensor
,
axis
,
input_desc
.
get
(),
GetBasePtr
(
in
),
desc_vector
.
data
(),
vct_tensor
.
data
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
split
,
ops
::
SplitMLUKernel
<
float
>
,
ops
::
SplitMLUKernel
<
int64_t
>
,
ops
::
SplitMLUKernel
<
int
>
,
ops
::
SplitMLUKernel
<
bool
>
,
ops
::
SplitMLUKernel
<
plat
::
float16
>
);
paddle/fluid/platform/device/mlu/CMakeLists.txt
浏览文件 @
ac3dc0bb
...
@@ -5,6 +5,6 @@ IF(WITH_MLU)
...
@@ -5,6 +5,6 @@ IF(WITH_MLU)
cc_library
(
mlu_stream SRCS mlu_stream.cc DEPS boost mlu_info stream_callback_manager
)
cc_library
(
mlu_stream SRCS mlu_stream.cc DEPS boost mlu_info stream_callback_manager
)
cc_library
(
mlu_device_context SRCS device_context.cc DEPS mlu_stream
)
cc_library
(
mlu_device_context SRCS device_context.cc DEPS mlu_stream
eigen3
)
cc_test
(
mlu_device_context_test SRCS device_context_test.cc DEPS mlu_device_context
)
cc_test
(
mlu_device_context_test SRCS device_context_test.cc DEPS mlu_device_context
)
ENDIF
()
ENDIF
()
python/paddle/fluid/tests/unittests/mlu/test_concat_op_mlu.py
0 → 100644
浏览文件 @
ac3dc0bb
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2021
class
TestConcatOp
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"concat"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
init_dtype
()
self
.
init_test_data
()
self
.
inputs
=
{
'X'
:
[(
'x0'
,
self
.
x0
),
(
'x1'
,
self
.
x1
),
(
'x2'
,
self
.
x2
)]}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
if
self
.
axis
<
0
:
self
.
actual_axis
=
self
.
axis
+
len
(
self
.
x0
.
shape
)
self
.
actual_axis
=
self
.
actual_axis
if
self
.
actual_axis
>
0
else
0
else
:
self
.
actual_axis
=
self
.
axis
self
.
outputs
=
{
'Out'
:
np
.
concatenate
(
(
self
.
x0
,
self
.
x1
,
self
.
x2
),
axis
=
self
.
actual_axis
)
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'x0'
,
'x2'
],
'Out'
)
self
.
check_grad_with_place
(
self
.
place
,
[
'x1'
],
'Out'
)
self
.
check_grad_with_place
(
self
.
place
,
[
'x2'
],
'Out'
)
def
init_test_data
(
self
):
self
.
x0
=
np
.
random
.
random
((
1
,
4
,
50
)).
astype
(
self
.
dtype
)
self
.
x1
=
np
.
random
.
random
((
2
,
4
,
50
)).
astype
(
self
.
dtype
)
self
.
x2
=
np
.
random
.
random
((
3
,
4
,
50
)).
astype
(
self
.
dtype
)
self
.
axis
=
0
class
TestConcatOp2
(
TestConcatOp
):
def
init_test_data
(
self
):
self
.
x0
=
np
.
random
.
random
((
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
x1
=
np
.
random
.
random
((
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
x2
=
np
.
random
.
random
((
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
axis
=
1
@
skip_check_grad_ci
(
reason
=
"The function 'check_grad' for large inputs is too slow."
)
class
TestConcatOp3
(
TestConcatOp
):
def
init_test_data
(
self
):
self
.
x0
=
np
.
random
.
random
((
1
,
256
,
170
,
256
)).
astype
(
self
.
dtype
)
self
.
x1
=
np
.
random
.
random
((
1
,
128
,
170
,
256
)).
astype
(
self
.
dtype
)
self
.
x2
=
np
.
random
.
random
((
1
,
128
,
170
,
256
)).
astype
(
self
.
dtype
)
self
.
axis
=
1
def
test_check_grad
(
self
):
pass
@
skip_check_grad_ci
(
reason
=
"This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
)
class
TestConcatOp4
(
TestConcatOp
):
def
init_test_data
(
self
):
self
.
x0
=
np
.
random
.
random
((
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
x1
=
np
.
random
.
random
((
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
x2
=
np
.
random
.
random
((
0
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
axis
=
0
def
test_check_grad
(
self
):
pass
class
TestConcatOp5
(
TestConcatOp
):
def
init_test_data
(
self
):
self
.
x0
=
np
.
random
.
random
((
5
,
1
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
x1
=
np
.
random
.
random
((
5
,
2
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
x2
=
np
.
random
.
random
((
5
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
axis
=
-
3
#----------------Concat Fp16----------------
def
create_test_fp16
(
parent
):
class
TestConcatFp16
(
parent
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"Fp16"
)
TestConcatFp16
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestConcatFp16
create_test_fp16
(
TestConcatOp
)
create_test_fp16
(
TestConcatOp2
)
create_test_fp16
(
TestConcatOp3
)
create_test_fp16
(
TestConcatOp4
)
create_test_fp16
(
TestConcatOp5
)
#----------------Concat Int64----------------
def
create_test_int64
(
parent
):
class
TestConcatInt64
(
parent
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int64
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"Int64"
)
TestConcatInt64
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestConcatInt64
create_test_int64
(
TestConcatOp
)
create_test_int64
(
TestConcatOp2
)
create_test_int64
(
TestConcatOp3
)
create_test_int64
(
TestConcatOp4
)
create_test_int64
(
TestConcatOp5
)
#----------------Concat Int32----------------
def
create_test_int32
(
parent
):
class
TestConcatInt32
(
parent
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int32
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"Int32"
)
TestConcatInt32
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestConcatInt32
create_test_int32
(
TestConcatOp
)
create_test_int32
(
TestConcatOp2
)
create_test_int32
(
TestConcatOp3
)
create_test_int32
(
TestConcatOp4
)
create_test_int32
(
TestConcatOp5
)
#----------------Concat AxisTensor----------------
def
create_test_AxisTensor
(
parent
):
class
TestConcatAxisTensor
(
parent
):
def
setUp
(
self
):
self
.
op_type
=
"concat"
self
.
dtype
=
self
.
init_dtype
()
self
.
init_test_data
()
self
.
inputs
=
{
'X'
:
[(
'x0'
,
self
.
x0
),
(
'x1'
,
self
.
x1
),
(
'x2'
,
self
.
x2
)],
'AxisTensor'
:
np
.
array
([
self
.
axis
]).
astype
(
"int32"
)
}
self
.
attrs
=
{}
if
self
.
axis
<
0
:
self
.
actual_axis
=
self
.
axis
+
len
(
self
.
x0
.
shape
)
self
.
actual_axis
=
self
.
actual_axis
if
self
.
actual_axis
>
0
else
0
else
:
self
.
actual_axis
=
self
.
axis
self
.
outputs
=
{
'Out'
:
np
.
concatenate
(
(
self
.
x0
,
self
.
x1
,
self
.
x2
),
axis
=
self
.
actual_axis
)
}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
init_test_data
(
self
):
self
.
x0
=
np
.
random
.
random
((
1
,
4
,
50
)).
astype
(
self
.
dtype
)
self
.
x1
=
np
.
random
.
random
((
2
,
4
,
50
)).
astype
(
self
.
dtype
)
self
.
x2
=
np
.
random
.
random
((
3
,
4
,
50
)).
astype
(
self
.
dtype
)
self
.
axis
=
0
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"AxisTensor"
)
TestConcatAxisTensor
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestConcatAxisTensor
create_test_AxisTensor
(
TestConcatOp
)
create_test_AxisTensor
(
TestConcatOp2
)
create_test_AxisTensor
(
TestConcatOp3
)
create_test_AxisTensor
(
TestConcatOp4
)
create_test_AxisTensor
(
TestConcatOp5
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_split_op_mlu.py
0 → 100644
浏览文件 @
ac3dc0bb
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
paddle
.
enable_static
()
SEED
=
2021
class
TestCase1
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
set_example
()
self
.
op_type
=
"split"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
ipt
=
self
.
x
.
astype
(
self
.
dtype
)
axis
=
self
.
axis
if
isinstance
(
self
.
axis
,
int
)
else
int
(
self
.
axis
[
0
])
tmp_outs
=
np
.
split
(
ipt
,
axis
=
axis
,
indices_or_sections
=
self
.
num_or_sections
)
tmp_outs
=
[
o
.
astype
(
self
.
dtype
)
for
o
in
tmp_outs
]
self
.
outputs
=
{
'Out'
:
[]}
self
.
outs
=
[]
for
i
,
o
in
enumerate
(
tmp_outs
):
self
.
outputs
[
"Out"
].
append
((
str
(
i
),
o
))
self
.
outs
.
append
(
str
(
i
))
self
.
attrs
=
{
"axis"
:
self
.
axis
,
"num"
:
self
.
num_or_sections
}
self
.
inputs
=
{}
self
.
inputs
.
update
({
'X'
:
ipt
.
astype
(
self
.
dtype
)})
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
op_type
=
"split"
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
set_example
(
self
):
self
.
dtype
=
"float32"
self
.
x
=
np
.
random
.
random
((
2
,
4
,
6
))
self
.
axis
=
1
self
.
num_or_sections
=
2
class
TestCase2
(
TestCase1
):
def
set_example
(
self
):
self
.
dtype
=
"float32"
self
.
x
=
np
.
random
.
random
((
20
,
4
,
50
))
self
.
axis
=
0
self
.
num_or_sections
=
4
class
TestCase4
(
TestCase1
):
def
set_example
(
self
):
self
.
dtype
=
"float16"
self
.
x
=
np
.
random
.
random
((
4
,
50
,
20
))
self
.
axis
=
2
self
.
num_or_sections
=
4
# Test Sections
class
TestCase5
(
TestCase1
):
def
set_example
(
self
):
super
().
set_example
()
self
.
x
=
np
.
random
.
random
((
2
,
10
,
4
))
self
.
axis
=
1
self
.
num_or_sections
=
[
2
,
4
,
8
]
def
setUp
(
self
):
super
().
setUp
()
self
.
attrs
.
update
({
"sections"
:
[
2
,
2
,
4
,
2
],
"num"
:
0
})
class
API_TestSplit
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
layers
.
data
(
'data'
,
shape
=
[
-
1
,
10
],
dtype
=
'float32'
)
x0
,
x1
=
paddle
.
split
(
data
,
num_or_sections
=
(
3
,
7
),
axis
=
1
)
place
=
fluid
.
MLUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
input1
=
np
.
random
.
random
([
1
,
10
]).
astype
(
'float32'
)
r0
,
r1
=
exe
.
run
(
feed
=
{
"data"
:
input1
},
fetch_list
=
[
x0
,
x1
])
ex_x0
,
ex_x1
=
np
.
split
(
input1
,
(
3
,
),
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
ex_x0
,
r0
))
self
.
assertTrue
(
np
.
allclose
(
ex_x1
,
r1
))
class
API_TestSplit2
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
layers
.
data
(
'data'
,
shape
=
[
-
1
,
10
],
dtype
=
'float32'
)
x0
,
x1
=
paddle
.
split
(
data
,
num_or_sections
=
2
,
axis
=
1
)
place
=
fluid
.
MLUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
input1
=
np
.
random
.
random
([
1
,
10
]).
astype
(
'float32'
)
r0
,
r1
=
exe
.
run
(
feed
=
{
"data"
:
input1
},
fetch_list
=
[
x0
,
x1
])
ex_x0
,
ex_x1
=
np
.
split
(
input1
,
2
,
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
ex_x0
,
r0
))
self
.
assertTrue
(
np
.
allclose
(
ex_x1
,
r1
))
class
API_TestDygraphSplit
(
unittest
.
TestCase
):
def
test_out1
(
self
):
with
fluid
.
dygraph
.
guard
(
paddle
.
MLUPlace
(
0
)):
input_1
=
np
.
random
.
random
([
4
,
6
,
6
]).
astype
(
"int32"
)
# input is a variable which shape is [4, 6, 6]
input
=
fluid
.
dygraph
.
to_variable
(
input_1
)
x0
,
x1
,
x2
=
paddle
.
split
(
input
,
num_or_sections
=
3
,
axis
=
1
)
x0_out
=
x0
.
numpy
()
x1_out
=
x1
.
numpy
()
x2_out
=
x2
.
numpy
()
ex_x0
,
ex_x1
,
ex_x2
=
np
.
split
(
input_1
,
3
,
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
ex_x0
,
x0_out
))
self
.
assertTrue
(
np
.
allclose
(
ex_x1
,
x1_out
))
self
.
assertTrue
(
np
.
allclose
(
ex_x2
,
x2_out
))
def
test_out2
(
self
):
with
fluid
.
dygraph
.
guard
(
paddle
.
MLUPlace
(
0
)):
input_1
=
np
.
random
.
random
([
4
,
6
,
6
]).
astype
(
"int32"
)
# input is a variable which shape is [4, 6, 6]
input
=
fluid
.
dygraph
.
to_variable
(
input_1
)
x0
,
x1
,
x2
=
paddle
.
split
(
input
,
num_or_sections
=
[
1
,
2
,
3
],
axis
=
1
)
x0_out
=
x0
.
numpy
()
x1_out
=
x1
.
numpy
()
x2_out
=
x2
.
numpy
()
ex_x0
,
ex_x1
,
ex_x2
=
np
.
split
(
input_1
,
(
1
,
3
),
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
ex_x0
,
x0_out
))
self
.
assertTrue
(
np
.
allclose
(
ex_x1
,
x1_out
))
self
.
assertTrue
(
np
.
allclose
(
ex_x2
,
x2_out
))
# attr(axis) is Tensor
class
TestSplitOp_AxisTensor
(
OpTest
):
def
setUp
(
self
):
self
.
_set_op_type
()
self
.
dtype
=
self
.
get_dtype
()
self
.
init_data
()
self
.
inputs
=
{
'X'
:
self
.
x
,
'AxisTensor'
:
np
.
array
([
self
.
axis
]).
astype
(
"int32"
)
}
self
.
attrs
=
{
'sections'
:
self
.
sections
,
'num'
:
self
.
num
}
out
=
np
.
split
(
self
.
x
,
self
.
indices_or_sections
,
self
.
axis
)
self
.
outputs
=
{
'Out'
:
[(
'out%d'
%
i
,
out
[
i
])
\
for
i
in
range
(
len
(
out
))]}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
init_data
(
self
):
self
.
x
=
np
.
random
.
random
((
4
,
5
,
6
)).
astype
(
self
.
dtype
)
self
.
axis
=
2
self
.
sections
=
[]
self
.
num
=
3
self
.
indices_or_sections
=
3
def
get_dtype
(
self
):
return
"float"
def
_set_op_type
(
self
):
self
.
op_type
=
"split"
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestSplitOp_SectionsTensor
(
OpTest
):
def
setUp
(
self
):
self
.
_set_op_type
()
self
.
dtype
=
self
.
get_dtype
()
self
.
init_data
()
self
.
inputs
=
{
'X'
:
self
.
x
}
sections_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
sections
):
sections_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
[
'SectionsTensorList'
]
=
sections_tensor
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'sections'
:
self
.
sections_infer
,
'num'
:
self
.
num
}
out
=
np
.
split
(
self
.
x
,
self
.
indices_or_sections
,
self
.
axis
)
self
.
outputs
=
{
'Out'
:
[(
'out%d'
%
i
,
out
[
i
])
\
for
i
in
range
(
len
(
out
))]}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
init_data
(
self
):
self
.
x
=
np
.
random
.
random
((
4
,
5
,
6
)).
astype
(
self
.
dtype
)
self
.
axis
=
1
self
.
sections
=
[
2
,
1
,
2
]
self
.
sections_infer
=
[
-
1
,
-
1
,
-
1
]
self
.
num
=
0
self
.
indices_or_sections
=
[
2
,
3
]
def
get_dtype
(
self
):
return
"float"
def
_set_op_type
(
self
):
self
.
op_type
=
"split"
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录