center_loss_op.h 5.8 KB
Newer Older
H
HaoRen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cstring>
#include <limits>
#include <vector>
20

H
HaoRen 已提交
21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/transform.h"
24
#include "paddle/phi/kernels/funcs/blas/blas.h"
25

H
HaoRen 已提交
26 27 28
namespace paddle {
namespace operators {

29
using Tensor = phi::DenseTensor;
30 31
template <typename T,
          int MajorType = Eigen::RowMajor,
H
HaoRen 已提交
32 33
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
34 35
template <typename T,
          int MajorType = Eigen::RowMajor,
H
HaoRen 已提交
36 37 38 39 40 41 42 43 44 45 46 47
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct SubFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a - b; }
};

template <typename DeviceContext, typename T>
class CenterLossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
48 49 50 51
    auto *X = ctx.Input<phi::DenseTensor>("X");  // deep feature
    auto *labels = ctx.Input<phi::DenseTensor>("Label");
    auto *centers = ctx.Input<phi::DenseTensor>("Centers");
    auto *update_rate = ctx.Input<phi::DenseTensor>("CenterUpdateRate");
H
HaoRen 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    int cluster_num = ctx.Attr<int>("cluster_num");
    auto *lr_center = update_rate->data<T>();
    T alpha = lr_center[0];
    bool need_update = static_cast<T>(ctx.Attr<bool>("need_update"));

    auto x_data = X->data<T>();
    auto label_data = labels->data<int64_t>();

    auto centers_dim = centers->dims();
    auto centers_data = centers->data<T>();

    auto x_dims = X->dims();
    int batch_size = x_dims[0];
    int deep_feat_dim = x_dims[1];

67
    auto centers_diff = ctx.Output<phi::DenseTensor>("SampleCenterDiff");
H
HaoRen 已提交
68
    auto centers_diff_data = centers_diff->mutable_data<T>(ctx.GetPlace());
69
    auto *out_loss = ctx.Output<phi::DenseTensor>("Loss");
H
HaoRen 已提交
70

71
    auto *centers_out = ctx.Output<phi::DenseTensor>("CentersOut");
H
HaoRen 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    auto *centers_out_data = centers_out->mutable_data<T>(ctx.GetPlace());

    if (centers_out_data != centers_data) {
      int size = centers_out->numel() * sizeof(T);
      memcpy(centers_out_data, centers_data, size);
    }

    std::vector<int> center_update_count(cluster_num, 1);
    auto &dev_ctx = ctx.template device_context<DeviceContext>();

    auto loss_data = out_loss->mutable_data<T>(ctx.GetPlace());

    Tensor centers_diffacc;  // used to accumulate all diff
    auto centers_diffacc_data =
        centers_diffacc.mutable_data<T>(centers_dim, ctx.GetPlace());
    int numel = centers_diffacc.numel();
    std::memset(centers_diffacc_data, 0, sizeof(T) * numel);

90
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
H
HaoRen 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    int tLabel;

    const T *x_index;
    const T *center_index;
    T *center_out_index;
    T *center_loss_diff_index;
    T *acc_index;
    platform::Transform<DeviceContext> trans;

    for (int i = 0; i < batch_size; ++i) {
      tLabel = label_data[i];
      center_update_count[tLabel]++;
      x_index = x_data + i * deep_feat_dim;                  // xi index
      center_index = centers_data + tLabel * deep_feat_dim;  // center index
      center_loss_diff_index = centers_diff_data + i * deep_feat_dim;
106 107 108 109 110 111
      trans(dev_ctx,
            x_index,
            x_index + deep_feat_dim,
            center_index,
            center_loss_diff_index,
            SubFunctor<T>());
H
HaoRen 已提交
112 113

      acc_index = centers_diffacc_data + tLabel * deep_feat_dim;
114 115 116
      blas.VADD(deep_feat_dim,
                center_loss_diff_index,
                acc_index,
H
HaoRen 已提交
117
                acc_index);  // accumulate
118 119 120 121
      loss_data[i] =
          blas.DOT(
              deep_feat_dim, center_loss_diff_index, center_loss_diff_index) /
          T(2.0);
H
HaoRen 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    }

    // update centers data
    if (need_update == true) {
      for (int i = 0; i < cluster_num; i++) {
        acc_index = centers_diffacc_data + i * deep_feat_dim;
        center_out_index = centers_out_data + i * deep_feat_dim;
        T scale = alpha / center_update_count[i];
        blas.SCAL(deep_feat_dim, scale, acc_index);
        blas.VADD(deep_feat_dim, acc_index, center_out_index, center_out_index);
      }
    }
  }
};

template <typename DeviceContext, typename T>
class CenterLossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
141 142 143
    auto *in0 = context.Input<phi::DenseTensor>("SampleCenterDiff");
    auto *in1 = context.Input<phi::DenseTensor>(framework::GradVarName("Loss"));
    auto *x_g = context.Output<phi::DenseTensor>(framework::GradVarName("X"));
H
HaoRen 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157
    auto sub_result = EigenMatrix<T>::From(*in0);
    auto out_grad = EigenMatrix<T>::From(*in1);

    auto x_dims = x_g->dims();
    int cols = x_g->numel() / x_dims[0];
    // calculate gradient
    auto grad_mat =
        (out_grad.broadcast(Eigen::array<int, 2>({{1, cols}}))) * sub_result;

    // propagate back to input
    auto &eigen_place =
        *context.template device_context<DeviceContext>().eigen_device();
    x_g->mutable_data<T>(context.GetPlace());
    // eigen matrix
158
    auto x_grad = EigenMatrix<T>::From(*x_g, phi::make_ddim({x_dims[0], cols}));
H
HaoRen 已提交
159 160 161 162 163 164
    x_grad.device(eigen_place) = grad_mat;
  }
};

}  // namespace operators
}  // namespace paddle