center_loss_op.h 5.6 KB
Newer Older
H
HaoRen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cstring>
#include <limits>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/transform.h"
23
#include "paddle/pten/kernels/funcs/blas/blas.h"
24

H
HaoRen 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct SubFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a - b; }
};

template <typename DeviceContext, typename T>
class CenterLossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *X = ctx.Input<Tensor>("X");  // deep feature
    auto *labels = ctx.Input<Tensor>("Label");
    auto *centers = ctx.Input<Tensor>("Centers");
    auto *update_rate = ctx.Input<Tensor>("CenterUpdateRate");
    int cluster_num = ctx.Attr<int>("cluster_num");
    auto *lr_center = update_rate->data<T>();
    T alpha = lr_center[0];
    bool need_update = static_cast<T>(ctx.Attr<bool>("need_update"));

    auto x_data = X->data<T>();
    auto label_data = labels->data<int64_t>();

    auto centers_dim = centers->dims();
    auto centers_data = centers->data<T>();

    auto x_dims = X->dims();
    int batch_size = x_dims[0];
    int deep_feat_dim = x_dims[1];

    auto centers_diff = ctx.Output<Tensor>("SampleCenterDiff");
    auto centers_diff_data = centers_diff->mutable_data<T>(ctx.GetPlace());
    auto *out_loss = ctx.Output<Tensor>("Loss");

    auto *centers_out = ctx.Output<Tensor>("CentersOut");
    auto *centers_out_data = centers_out->mutable_data<T>(ctx.GetPlace());

    if (centers_out_data != centers_data) {
      int size = centers_out->numel() * sizeof(T);
      memcpy(centers_out_data, centers_data, size);
    }

    std::vector<int> center_update_count(cluster_num, 1);
    auto &dev_ctx = ctx.template device_context<DeviceContext>();

    auto loss_data = out_loss->mutable_data<T>(ctx.GetPlace());

    Tensor centers_diffacc;  // used to accumulate all diff
    auto centers_diffacc_data =
        centers_diffacc.mutable_data<T>(centers_dim, ctx.GetPlace());
    int numel = centers_diffacc.numel();
    std::memset(centers_diffacc_data, 0, sizeof(T) * numel);

87
    auto blas = pten::funcs::GetBlas<DeviceContext, T>(ctx);
H
HaoRen 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    int tLabel;

    const T *x_index;
    const T *center_index;
    T *center_out_index;
    T *center_loss_diff_index;
    T *acc_index;
    platform::Transform<DeviceContext> trans;

    for (int i = 0; i < batch_size; ++i) {
      tLabel = label_data[i];
      center_update_count[tLabel]++;
      x_index = x_data + i * deep_feat_dim;                  // xi index
      center_index = centers_data + tLabel * deep_feat_dim;  // center index
      center_loss_diff_index = centers_diff_data + i * deep_feat_dim;
      trans(dev_ctx, x_index, x_index + deep_feat_dim, center_index,
            center_loss_diff_index, SubFunctor<T>());

      acc_index = centers_diffacc_data + tLabel * deep_feat_dim;
      blas.VADD(deep_feat_dim, center_loss_diff_index, acc_index,
                acc_index);  // accumulate
      loss_data[i] = blas.DOT(deep_feat_dim, center_loss_diff_index,
                              center_loss_diff_index) /
                     T(2.0);
    }

    // update centers data
    if (need_update == true) {
      for (int i = 0; i < cluster_num; i++) {
        acc_index = centers_diffacc_data + i * deep_feat_dim;
        center_out_index = centers_out_data + i * deep_feat_dim;
        T scale = alpha / center_update_count[i];
        blas.SCAL(deep_feat_dim, scale, acc_index);
        blas.VADD(deep_feat_dim, acc_index, center_out_index, center_out_index);
      }
    }
  }
};

template <typename DeviceContext, typename T>
class CenterLossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *in0 = context.Input<Tensor>("SampleCenterDiff");
    auto *in1 = context.Input<Tensor>(framework::GradVarName("Loss"));
    auto *x_g = context.Output<Tensor>(framework::GradVarName("X"));
    auto sub_result = EigenMatrix<T>::From(*in0);
    auto out_grad = EigenMatrix<T>::From(*in1);

    auto x_dims = x_g->dims();
    int cols = x_g->numel() / x_dims[0];
    // calculate gradient
    auto grad_mat =
        (out_grad.broadcast(Eigen::array<int, 2>({{1, cols}}))) * sub_result;

    // propagate back to input
    auto &eigen_place =
        *context.template device_context<DeviceContext>().eigen_device();
    x_g->mutable_data<T>(context.GetPlace());
    // eigen matrix
    auto x_grad =
149
        EigenMatrix<T>::From(*x_g, pten::make_ddim({x_dims[0], cols}));
H
HaoRen 已提交
150 151 152 153 154 155
    x_grad.device(eigen_place) = grad_mat;
  }
};

}  // namespace operators
}  // namespace paddle