lod_tensor.cc 13.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

F
fengjiayi 已提交
15 16 17 18 19
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/framework.pb.h"
F
fengjiayi 已提交
22
#include "paddle/fluid/framework/lod_tensor.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/framework/var_type.h"
X
refine  
Xin Pan 已提交
24
#include "paddle/fluid/framework/version.h"
25

Y
Yi Wang 已提交
26 27
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
28

Y
Yu Yang 已提交
29 30 31
#include "paddle/fluid/recordio/scanner.h"
#include "paddle/fluid/recordio/writer.h"

32 33 34
namespace paddle {
namespace framework {

武毅 已提交
35
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
36
  os << "{";
武毅 已提交
37
  for (auto &v : lod) {
38
    os << "{";
L
Liu Yiqun 已提交
39
    bool is_first = true;
武毅 已提交
40
    for (auto &i : v) {
L
Liu Yiqun 已提交
41 42 43 44 45 46
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
47 48 49 50 51 52 53 54
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
55
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
56 57
  os << "\tlod: " << t.lod() << "\n";
  os << static_cast<Tensor>(t) << "\n";
Y
Yang Yang 已提交
58 59 60 61

  return os;
}

Q
Qiao Longfei 已提交
62 63 64 65 66 67
std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

武毅 已提交
68
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
69
                 size_t elem_end) {
70
  PADDLE_ENFORCE_LT(level, in.size());
71
  PADDLE_ENFORCE_LT(elem_begin, elem_end);
72 73 74 75 76 77 78 79
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
80 81 82
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
83 84
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
85
  }
86 87 88 89
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
90
    for (auto &ele : res[lvl]) {
91 92 93 94 95 96
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
97
LoD ToAbsOffset(const LoD &in) {
98 99 100
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
Q
Qiao Longfei 已提交
101 102 103 104
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
105 106 107
    }
  }
  return result;
108 109
}

武毅 已提交
110
bool operator==(const LoD &a, const LoD &b) {
111 112 113 114 115
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
116 117
    const auto &a_level = a[i];
    const auto &b_level = b[i];
118 119 120 121 122 123 124 125 126 127
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
128 129
}

Y
Yan Chunwei 已提交
130 131 132 133 134 135 136
bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
137
    // check: all the offsets in a level should be non-descending
S
sneaxiy 已提交
138 139
    if (!std::is_sorted(level.begin(), level.end())) {
      return false;
Y
Yan Chunwei 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
161
    // allowed).
Y
Yan Chunwei 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

184
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
185
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
186 187 188 189 190 191
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
192 193 194 195
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
196
    sub_lod.emplace_back(level_lens);
197 198 199
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
200 201

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
202 203
}

武毅 已提交
204
void AppendLoD(LoD *lod, const LoD &lod_length) {
205 206
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
207
      "The lod_length should has the same size with the appended lod.");
208
  if (lod->empty()) {
Y
Yang Yu 已提交
209 210 211
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
212 213
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
214
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
215
    auto &level = (*lod)[i];
216 217 218 219 220 221
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
222 223
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
224
  {  // the 1st field, uint32_t version for LoDTensor
X
refine  
Xin Pan 已提交
225 226
    os.write(reinterpret_cast<const char *>(&kCurTensorVersion),
             sizeof(kCurTensorVersion));
武毅 已提交
227
  }
228 229 230 231 232 233
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
234 235 236 237 238 239 240 241 242 243 244
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
245
  // the 3st field, Tensor
Y
Yi Wang 已提交
246
  TensorToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
247 248
}

Y
Yancey 已提交
249 250
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
251
  {
Y
Yancey 已提交
252
    // the 1st field, unit32_t version for LoDTensor
253 254
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
X
refine  
Xin Pan 已提交
255 256
    PADDLE_ENFORCE(framework::IsTensorVersionSupported(version),
                   "tensor version %u is not supported.", version);
257
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
258
  }
259 260
  {
    // the 2st field, LoD information
武毅 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
274
  // the 3st filed, Tensor
Y
Yi Wang 已提交
275
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
276 277
}

F
fengjiayi 已提交
278
void WriteToRecordIO(recordio::Writer *writer,
Y
Yu Yang 已提交
279 280 281 282 283 284 285 286
                     const std::vector<LoDTensor> &tensor,
                     const platform::DeviceContext &dev_ctx) {
  std::stringstream buffer;
  size_t sz = tensor.size();
  buffer.write(reinterpret_cast<const char *>(&sz), sizeof(uint32_t));
  for (auto &each : tensor) {
    SerializeToStream(buffer, each, dev_ctx);
  }
F
fengjiayi 已提交
287
  writer->Write(buffer.str());
Y
Yu Yang 已提交
288 289
}

Y
yuyang18 已提交
290 291 292 293 294
bool ReadFromRecordIO(recordio::Scanner *scanner,
                      const platform::DeviceContext &dev_ctx,
                      std::vector<LoDTensor> *result_ptr) {
  if (!scanner->HasNext()) {
    return false;
Y
Yu Yang 已提交
295
  }
Y
yuyang18 已提交
296 297 298 299 300 301 302 303 304 305
  std::istringstream sin(scanner->Next());
  uint32_t sz;
  sin.read(reinterpret_cast<char *>(&sz), sizeof(uint32_t));
  auto &result = *result_ptr;
  result.resize(sz);
  for (uint32_t i = 0; i < sz; ++i) {
    DeserializeFromStream(sin, &result[i], dev_ctx);
  }

  return true;
Y
Yu Yang 已提交
306
}
P
peizhilin 已提交
307

Y
Yang Yang 已提交
308 309 310
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
Y
Yang Yang 已提交
311 312 313 314
  int batch_size =
      lod().empty() ? dims()[0] : static_cast<int>(lod()[0].size()) - 1;
  size_t result_size = std::min(static_cast<size_t>(batch_size), places.size());
  size_t remainder = batch_size % places.size();
Y
Yu Yang 已提交
315 316 317 318

  std::vector<LoDTensor> results;
  results.reserve(result_size);

Y
Yang Yang 已提交
319
  int step_width = static_cast<int>(batch_size / result_size);
Y
Yu Yang 已提交
320 321 322 323 324 325
  for (size_t i = 0; i < result_size; ++i) {
    int begin = static_cast<int>(i * step_width);
    int end = static_cast<int>((i + 1) * step_width);
    if (i + 1 == places.size()) {  // last
      end += remainder;
    }
Y
Yang Yang 已提交
326

327
    LoDTensor dst;
Y
Yang Yang 已提交
328 329
    if (lod().empty()) {
      auto src = Slice(begin, end);
Y
Yang Yang 已提交
330
      auto &dst_place = places[i];
Y
Yi Wang 已提交
331
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
332 333 334 335 336
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
Y
Yang Yang 已提交
337
      auto &dst_place = places[i];
Y
Yi Wang 已提交
338
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
339 340 341 342 343 344 345 346 347 348 349

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
Y
Yang Yang 已提交
350
    results.emplace_back(dst);
Y
Yang Yang 已提交
351 352
  }

Y
Yu Yang 已提交
353
  return results;
Y
Yang Yang 已提交
354 355
}

Y
Yang Yang 已提交
356
void LoDTensor::MergeLoDTensor(
357 358
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
Y
Yang Yang 已提交
359
  PADDLE_ENFORCE(!lod_tensors.empty());
Y
Yang Yang 已提交
360

Y
Yang Yang 已提交
361
  framework::DDim new_dim = lod_tensors[0]->dims();
Y
Yu Yang 已提交
362
  auto new_type = lod_tensors[0]->type();
Y
Yang Yang 已提交
363 364 365 366
  framework::DataLayout new_layout = lod_tensors[0]->layout();
  LoD new_lod = lod_tensors[0]->lod();
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
S
sneaxiy 已提交
367
    PADDLE_ENFORCE_EQ(new_type, t->type());
Y
Yang Yang 已提交
368 369 370 371 372 373 374
    PADDLE_ENFORCE_EQ(new_layout, t->layout());

    PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0],
                      framework::product(t->dims()) / t->dims()[0]);
    new_dim[0] += t->dims()[0];

    auto &lod = t->lod();
F
fengjiayi 已提交
375
    PADDLE_ENFORCE_EQ(new_lod.size(), lod.size());
Y
Yang Yang 已提交
376 377
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
C
chengduo 已提交
378
      size_t offset = sub_lod.back();
Y
Yang Yang 已提交
379 380 381 382
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
Y
Yang Yang 已提交
383 384
  }
  Resize(new_dim);
385
  set_layout(new_layout);
Y
Yang Yang 已提交
386
  set_lod(new_lod);
387
  mutable_data(dst_place, new_type);
Y
Yang Yang 已提交
388

389
  int begin = 0;
Y
Yang Yang 已提交
390
  for (auto *src : lod_tensors) {
391 392
    int end = begin + src->dims()[0];
    auto dst = Slice(begin, end);
Y
Yi Wang 已提交
393
    framework::TensorCopy(*src, dst_place, &dst);
394
    begin = end;
Y
Yang Yang 已提交
395 396 397
  }
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
LoD ConvertToLengthBasedLoD(const LoD &offset_lod) {
  LoD length_lod;
  length_lod.reserve(offset_lod.size());
  for (size_t lvl = 0; lvl < offset_lod.size(); ++lvl) {
    std::vector<size_t> level;
    if (offset_lod[lvl].size() > 0) {
      level.reserve(offset_lod[lvl].size() - 1);
    }
    for (size_t idx = 0; idx < offset_lod[lvl].size() - 1; ++idx) {
      level.push_back(offset_lod[lvl][idx + 1] - offset_lod[lvl][idx]);
    }
    length_lod.push_back(level);
  }
  return length_lod;
}

LoD ConvertToOffsetBasedLoD(const LoD &length_lod) {
  LoD offset_lod;
  offset_lod.reserve(length_lod.size());
  for (size_t lvl = 0; lvl < length_lod.size(); ++lvl) {
    std::vector<size_t> level;
    level.reserve(length_lod[lvl].size() + 1);
    size_t tmp = 0;
    level.push_back(tmp);
    for (size_t idx = 0; idx < length_lod[lvl].size(); ++idx) {
      tmp += length_lod[lvl][idx];
      level.push_back(tmp);
    }
    offset_lod.push_back(level);
  }
  return offset_lod;
}

431 432
}  // namespace framework
}  // namespace paddle