util.py 19.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Some Useful method for py_paddle.
"""

import swig_paddle
import os
import paddle.trainer.PyDataProviderWrapper
import paddle.proto.ParameterConfig_pb2
import paddle.proto.ModelConfig_pb2
import paddle.proto.TrainerConfig_pb2
import weakref
import numpy
import struct
import sys
import copy


def initializePaddle(*args):
    """
    To initialize paddle process.
    :param args: Command line options, such as --use_gpu=0, etc.
    :return: Nothing.
    """
    old_argv = copy.deepcopy(sys.argv)
    old_pypath = os.getenv("PYTHONPATH")
    pypath = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
    if old_pypath is not None:
        pypath = os.pathsep.join([pypath, old_pypath])
        os.putenv("PYTHONPATH", pypath)
    args = [""] + list(args)  # argv[0] is command name, it is not important.
    swig_paddle.__initPaddle__(args)
    sys.argv = old_argv


def __monkeypatch_init_paddle__():
    swig_paddle.__initPaddle__ = swig_paddle.initPaddle
    swig_paddle.initPaddle = initializePaddle


class __ParameterCallbackWrapper__(swig_paddle.UpdateCallback):
    """
    Wrap the python callable object to paddle.UpdateCallback.

    INTERNAL USE ONLY.
    """

    def __init__(self, callback):
        swig_paddle.UpdateCallback.__init__(self)
        self.callback = callback

    def apply(self, param):
        self.callback(param)

    @staticmethod
    def wrap(callback):
        """
        Cast the python callable object/paddle.UpdateCallback to
        swig_paddle.UpdateCallback.__disown__
        :param callback: callable or swig_paddle.UpdateCallback object.
        """
        if isinstance(callback, swig_paddle.UpdateCallback):
            return callback.__disown__()
        elif isinstance(callback, weakref.ProxyType):
            raise RuntimeError("Should not pass __disown__ object")
        else:
            return __ParameterCallbackWrapper__(callback).__disown__()

81

E
emailweixu 已提交
82 83 84
def __arguments_to_numpy__(i, arg):
    assert isinstance(arg, swig_paddle.Arguments)
    value = arg.getSlotValue(i)
Y
Yu Yang 已提交
85
    ids = arg.getSlotIds(i)
E
emailweixu 已提交
86 87 88 89 90 91
    if value is not None:
        assert isinstance(value, swig_paddle.Matrix)
        value = value.copyToNumpyMat()
    if ids is not None:
        assert isinstance(ids, swig_paddle.IVector)
        ids = ids.copyToNumpyArray()
92 93
    return {"value": value, "id": ids}

Z
zhangjinchao01 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

def __monkeypatch_gradient_machine__():
    """
    Add some class methods to GradientMachine.
    This method should be only used internally.
    """
    swig_paddle.GradientMachine.loadFromConfigFile = \
        staticmethod(loadGradientMachine)

    def __matrix_to_numpy__(m):
        if isinstance(m, swig_paddle.Matrix):
            return m.copyToNumpyMat()
        elif isinstance(m, swig_paddle.IVector):
            return m.copyToNumpyArra()
        else:
            raise RuntimeError("Input arg should be matrix or vecotr.")

    def createFromConfigProto(protoObj,
                              createMode=swig_paddle.CREATE_MODE_NORMAL,
113 114 115 116 117
                              paramTypes=[
                                  swig_paddle.PARAMETER_VALUE,
                                  swig_paddle.PARAMETER_GRADIENT,
                                  swig_paddle.PARAMETER_MOMENTUM
                              ]):
Z
zhangjinchao01 已提交
118 119 120 121 122 123 124 125 126 127
        """
        Create Gradient Machine From Proto object.
        :param protoObj: Model config
        :type protoObj: proto.ModelConfig_pb2.ModelConfig
        :param createMode: Create Mode, default is normal.
        :type createMode: int
        :param paramTypes: the gradient machine parameter type.
        :type paramTypes: list of int
        :return: paddle.GradientMachine
        """
E
emailweixu 已提交
128
        assert isinstance(protoObj, paddle.proto.ModelConfig)
Z
zhangjinchao01 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        return swig_paddle.GradientMachine.createByConfigProtoStr(
            protoObj.SerializeToString(), createMode, paramTypes)

    swig_paddle.GradientMachine.createFromConfigProto = \
        staticmethod(createFromConfigProto)

    def forwardTest(self, inArgs):
        """
        forwardTest. forward gradient machine in test mode, and return a numpy
        matrix dict.

        :param inArgs: The input arguments
        :type inArgs: paddle.Arguments
        :return: A dictionary with keys ['id', 'value'], each value is a
                 numpy.ndarray.
        """
        outArgs = swig_paddle.Arguments.createArguments(0)
        self.forward(inArgs, outArgs, swig_paddle.PASS_TEST)
147 148 149 150
        return [
            __arguments_to_numpy__(i, outArgs)
            for i in xrange(outArgs.getSlotNum())
        ]
Z
zhangjinchao01 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

    swig_paddle.GradientMachine.forwardTest = forwardTest

    # Monkey patching backward
    swig_paddle.GradientMachine.__backward__ = swig_paddle.GradientMachine.backward

    def backward(self, callback):
        """
        GradientMachine Backward
        :param callback: a callback which parameter is (paddle.Parameter) or
                         a paddle.UpdateCallback object.
        """
        self.__backward__(__ParameterCallbackWrapper__.wrap(callback))

    swig_paddle.GradientMachine.backward = backward

    # Monkey patching forwardBackward.
    swig_paddle.GradientMachine.__forwardBackward__ = \
        swig_paddle.GradientMachine.forwardBackward

171 172 173 174
    def forwardBackward(self,
                        inArgs,
                        outArgs,
                        passType,
Z
zhangjinchao01 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
                        callback=swig_paddle.UpdateCallback()):
        """
        GradientMachine forward backward.
        :param inArgs: Input Arguments for GradientMachine.
        :type inArgs: paddle.Arguments
        :param outArgs: Output Arguments for GradientMachine.
        :type outArgs: paddle.Arguments
        :param passType: gradient machine's pass type.
        :type passType: paddle.PassType
        :param callback: a callable object with arguments (paddle.Parameter) or
                         a paddle.UpdateCallback it will be called when
                         backward
        """
        self.__forwardBackward__(inArgs, outArgs, passType,
                                 __ParameterCallbackWrapper__.wrap(callback))

    swig_paddle.GradientMachine.forwardBackward = forwardBackward

    def getParameters(self):
        return (self.getParameter(i) for i in xrange(self.getParameterSize()))

    swig_paddle.GradientMachine.getParameters = getParameters

    def getLayerOutputs(self, layerNames):
        """
        getLayerOutputs. get outputs of layers and return a numpy matrix dict.
        :param layerNames: layer names.
        :type layerNames: string or list.
        """
        if isinstance(layerNames, basestring):
            layerNames = [layerNames]
        elif not isinstance(layerNames, list):
            raise RuntimeError("Input args shuld be string or a sting list.")

        output = dict()
        for name in layerNames:
            output[name] = __matrix_to_numpy__(self.getLayerOutput(name))
        return output

    swig_paddle.GradientMachine.getLayerOutputs = getLayerOutputs

216

Z
zhangjinchao01 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
def loadGradientMachine(config_filename, model_dir=None):
    """
    Load a gradient machine from config file name/path.
    :param config_filename: The trainer config file name/path
    :param model_dir: The model parameter directory. None if same as the
    directory of config_filename
    :return: GradientMachine with some enhance methods.
    :rtype: paddle.GradientMachine
    """
    trainer_config = swig_paddle.TrainerConfig.createFromTrainerConfigFile(
        config_filename)
    assert isinstance(trainer_config, swig_paddle.TrainerConfig)
    model_conf = trainer_config.getModelConfig()
    network = swig_paddle.GradientMachine.createByModelConfig(model_conf)
    assert isinstance(network, swig_paddle.GradientMachine)
    if model_dir is None:
        model_dir = os.path.dirname(config_filename)
    network.loadParameters(model_dir)
    return network

237

Z
zhangjinchao01 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
def loadParameterFile(fn):
    """
    Load Paddle Parameter file to numpy.ndarray
    :param fn: file name or file like object.
    :type fn: str or file like object.
    :return: numpy array
    :rtype: numpy.ndarray
    :raise: paddle.UnsupportError when parameter format is wrong.
    """
    if isinstance(fn, str):
        with open(fn, 'rb') as f:
            return loadParameterFile(f)
    elif hasattr(fn, 'read'):  # File like object
        version, = struct.unpack('i', fn.read(4))
        if version != 0:
            raise swig_paddle.UnsupportError()
        value_length, = struct.unpack("I", fn.read(4))
        if value_length != 4 and value_length != 8:
            raise swig_paddle.UnsupportError()
        dtype = 'float32' if value_length == 4 else 'float64'
        param_size, = struct.unpack("L", fn.read(8))
        value = numpy.fromfile(fn, dtype)
        if len(value) != param_size:
            raise swig_paddle.UnsupportError()
        return value
    else:
        raise swig_paddle.UnsupportError()

266

Z
zhangjinchao01 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
class DataProviderWrapperConverter(object):
    """
    A class convert DataFormat from PyDataProvider Wrapper to
    py_paddle.paddle.Arguemnts.
    """

    class DenseValueConverter(object):
        """
        Internal class
        """

        def __init__(self, header_def):
            self.__dim__ = header_def.dim
            self.buf = []

        def append(self, other):
            assert len(other) == self.__dim__
            self.buf += other

        def __call__(self, slot_idx, arg):
            mat = swig_paddle.Matrix.createDense(self.buf,
288 289
                                                 len(self.buf) / self.__dim__,
                                                 self.__dim__)
Z
zhangjinchao01 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
            arg.setSlotValue(slot_idx, mat)

    class IdValueConverter(object):
        """
        Internal class
        """

        def __init__(self, *args):
            self.buf = []

        def append(self, other):
            assert isinstance(other, int)
            self.buf.append(other)

        def __call__(self, slot_idx, arg):
            arg.setSlotIds(slot_idx, swig_paddle.IVector.create(self.buf))

    class SparseNonValueConverter(object):
        """
        Internal class
        """

        def __init__(self, slot_def):
            self.indices = [0]
            self.cols = []
            self.dim = slot_def.dim

        def append(self, other):
            self.indices.append(self.indices[-1] + len(other))
            self.cols += other

        def __call__(self, slot_idx, arg):
322 323
            mat = swig_paddle.Matrix.createSparse(
                len(self.indices) - 1, self.dim, len(self.cols), True)
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
            assert isinstance(mat, swig_paddle.Matrix)
            mat.sparseCopyFrom(self.indices, self.cols)
            self.putIntoArg(slot_idx, arg, mat)

        def putIntoArg(self, slot_idx, arg, mat):
            arg.setSlotValue(slot_idx, mat)

    class SparseValueConverter(SparseNonValueConverter):
        """
        Internal class
        """

        def __init__(self, slot_def):
            super(DataProviderWrapperConverter.SparseValueConverter,
                  self).__init__(slot_def)
            self.values = []

        def append(self, other):
            super(DataProviderWrapperConverter.SparseValueConverter,
                  self).append(map(lambda x: x[0], other))
            self.values += map(lambda x: x[1], other)

        def __call__(self, slot_idx, arg):
347 348
            mat = swig_paddle.Matrix.createSparse(
                len(self.indices) - 1, self.dim, len(self.cols), False)
Z
zhangjinchao01 已提交
349 350 351 352 353 354 355 356
            assert isinstance(mat, swig_paddle.Matrix)
            mat.sparseCopyFrom(self.indices, self.cols, self.values)
            self.putIntoArg(slot_idx, arg, mat)

    __SLOT_VALUE_CONVERTER_MAP__ = {
        paddle.trainer.PyDataProviderWrapper.DenseSlot: DenseValueConverter,
        paddle.trainer.PyDataProviderWrapper.IndexSlot: IdValueConverter,
        paddle.trainer.PyDataProviderWrapper.SparseNonValueSlot:
357 358 359
        SparseNonValueConverter,
        paddle.trainer.PyDataProviderWrapper.SparseValueSlot:
        SparseValueConverter
Z
zhangjinchao01 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    }

    def __init__(self, use_seq, header):
        """
        Ctor
        :param use_seq: True if use sequence.
        :param header:  List of slots type,
                       trainer.PyDataProviderWrapper.SlotType
        """
        self.__use_seq__ = use_seq
        self.__header__ = header

    def convert(self, wrapper_data, argument=None):
        """
        Convert PyDataProviderWrapper format to paddle.Argument
        :param wrapper_data: PyDataProviderWrapper yield's data list.
        :param argument: The output paddle.Arguments.
                        If it is not None, it will assign data in this
                        arguments, else it will create new arguments.
        :return: arguments that contains data.
        :rtype: paddle.Arguments
        """
        if argument is None:
            argument = swig_paddle.Arguments.createArguments(0)
384
        assert isinstance(argument, swig_paddle.Arguments)
Z
zhangjinchao01 已提交
385 386
        argument.resize(len(self.__header__))

387 388 389
        values = map(
            lambda x: DataProviderWrapperConverter.__SLOT_VALUE_CONVERTER_MAP__[x.__class__](x),
            self.__header__)
Z
zhangjinchao01 已提交
390 391 392 393 394 395 396 397 398

        if self.__use_seq__:
            seq_dim = [[] for _ in xrange(self.__header__.__len__())]
            seq_start_pos = [[0] for _ in xrange(self.__header__.__len__())]

            for each_sample in wrapper_data:
                for slot_idx, sequence in enumerate(each_sample):
                    for raw_data in sequence:
                        values[slot_idx].append(raw_data)
399 400
                    seq_start_pos[slot_idx].append(seq_start_pos[slot_idx][-1] +
                                                   len(sequence))
Z
zhangjinchao01 已提交
401 402 403
                    seq_dim[slot_idx].append(len(sequence))

            for slot_idx in xrange(len(self.__header__)):
404 405
                argument.setSlotSequenceDim(
                    slot_idx, swig_paddle.IVector.create(seq_dim[slot_idx]))
Z
zhangjinchao01 已提交
406
                argument.setSlotSequenceStartPositions(
407 408
                    slot_idx,
                    swig_paddle.IVector.create(seq_start_pos[slot_idx]))
Z
zhangjinchao01 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        else:
            for each_sample in wrapper_data:
                for raw_data, value in zip(each_sample, values):
                    value.append(raw_data)

        for i, v in enumerate(values):
            v(i, argument)

        return argument

    def __call__(self, wrapper_data, argument=None):
        """
        Invoke self.convert. See documents in self.convert.
        """
        return self.convert(wrapper_data, argument)


def __monkey_patch_protobuf_objects__():
    def ParameterConfig_toProto(self):
        """
        Convert paddle.ParameterConfig to
        proto.ParameterConfig_pb2.ParameterConfig

        :return: proto.ParameterConfig_pb2.ParameterConfig object.
        """
        param_conf = paddle.proto.ParameterConfig_pb2.ParameterConfig()
        param_conf.ParseFromString(self.toProtoString())
        return param_conf

    swig_paddle.ParameterConfig.toProto = ParameterConfig_toProto

    def OptimizationConfig_toProto(self):
        """
        Convert paddle.OptimizationConfig to
        proto.TrainerConfig_pb2.OptimizationConfig

        :return: proto.TrainerConfig_pb2.OptimizationConfig
        """
        opt_conf = proto.TrainerConfig_pb2.OptimizationConfig()
        opt_conf.ParseFromString(self.toProtoString())
        return opt_conf

    swig_paddle.OptimizationConfig.toProto = OptimizationConfig_toProto

    def OptimizationConfig_createFromProto(protoObj):
        """
        Create a new paddle.OptimizationConfig from
        proto.TrainerConfig_pb2.OptimizationConfig

        :param protoObj: proto.TrainerConfig_pb2.OptimizationConfig
        :return: paddle.OptimizationConfig
        """

462
        assert isinstance(protoObj, paddle.proto.OptimizationConfig)
Z
zhangjinchao01 已提交
463 464 465 466 467 468
        return swig_paddle.OptimizationConfig.createFromProtoString(
            protoObj.SerializeToString())

    swig_paddle.OptimizationConfig.createFromProto = staticmethod(
        OptimizationConfig_createFromProto)

E
emailweixu 已提交
469 470 471 472 473 474 475 476
    def TrainerConfig_createFromProto(protoObj):
        """
        Create a new paddle.TrainerConfig from
        proto.OptimizationConfig

        :param protoObj: proto.TrainerConfig
        :return: paddle.TrainerConfig
        """
477
        assert isinstance(protoObj, paddle.proto.TrainerConfig)
E
emailweixu 已提交
478 479 480 481 482 483
        return swig_paddle.TrainerConfig.createFromProtoString(
            protoObj.SerializeToString())

    swig_paddle.TrainerConfig.createFromProto = staticmethod(
        TrainerConfig_createFromProto)

Z
zhangjinchao01 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

def __monkey_patch_parameter__():
    def getBufs(self):
        """
        get all parameter vectors.
        NOTE: the return value is a generator. Maybe you need to cast to
        list or tuple or something else.

        :return: generator of all parameter vectors.
        :rtype: generator
        """
        return (self.getBuf(i) for i in xrange(swig_paddle.NUM_PARAMETER_TYPES))

    swig_paddle.Parameter.getBufs = getBufs


E
emailweixu 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
def __monkey_patch_trainer__():
    swig_paddle.Trainer.__create__ = staticmethod(swig_paddle.Trainer.create)

    def Trainer_create(config, model=None):
        """
        Create a trainer for model with TrainerCOnfig trainer_config
        trainer_config.model_config will be ignored when model is supplied.
        Trainer.trainOneBatch() and Trainer.forwardOneBatch() can be used only
        when trainer_config.data_config is set.

        A typical usage for Trainer is:
        .. code-block:: python
           trainer = Trainer.create(trainer_config, model)
           for p in xrange(num_passes)
               while True:
                   data = get_next_batch(batch_size)
                   if not data:
                       break
                   trainer.trainOneDataBatch(batch_size, data)
               trainer.finishTrainPass()
           trainer.finishTrain()

        The trainer will take care of logging, model saving, distributed
        training, etc.

        :param config: trainer configuration
        :type config: paddle.proto.TrainerConfig
        :param model: the model to be trained
        :type model: swig_paddle.GradientMachine
        :return: a trainer
        :rtype swig_paddle.Trainer

        """
        assert isinstance(config, paddle.proto.TrainerConfig)
        if model is not None:
            assert isinstance(model, swig_paddle.GradientMachine)
        return swig_paddle.Trainer.__create__(
            swig_paddle.TrainerConfig.createFromProto(config), model)
538

E
emailweixu 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552
    swig_paddle.Trainer.create = staticmethod(Trainer_create)

    swig_paddle.Trainer.__getForwardOutput__ = \
        swig_paddle.Trainer.getForwardOutput

    def getForwardOutput(self):
        """
        Get the netword outputs from the previous trainOneBatch(),
        trainOneDataBatch(), testOneDataPatch(), or forwardOneBatch() call.

        :return: list of dictionary with keys ['id', 'value'], each value is a
                 numpy.ndarray.
        """
        outArgs = self.__getForwardOutput__()
553 554 555 556
        return [
            __arguments_to_numpy__(i, outArgs)
            for i in xrange(outArgs.getSlotNum())
        ]
E
emailweixu 已提交
557 558 559

    swig_paddle.Trainer.getForwardOutput = getForwardOutput

560

Z
zhangjinchao01 已提交
561
def monkeypatches():
X
xuwei06 已提交
562 563 564 565 566
    patches = [__monkeypatch_init_paddle__,
               __monkeypatch_gradient_machine__,
               __monkey_patch_protobuf_objects__,
               __monkey_patch_parameter__,
               __monkey_patch_trainer__]
Z
zhangjinchao01 已提交
567 568
    for patch in patches:
        patch()