# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Some Useful method for py_paddle. """ import swig_paddle import os import paddle.trainer.PyDataProviderWrapper import paddle.proto.ParameterConfig_pb2 import paddle.proto.ModelConfig_pb2 import paddle.proto.TrainerConfig_pb2 import weakref import numpy import struct import sys import copy def initializePaddle(*args): """ To initialize paddle process. :param args: Command line options, such as --use_gpu=0, etc. :return: Nothing. """ old_argv = copy.deepcopy(sys.argv) old_pypath = os.getenv("PYTHONPATH") pypath = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) if old_pypath is not None: pypath = os.pathsep.join([pypath, old_pypath]) os.putenv("PYTHONPATH", pypath) args = [""] + list(args) # argv[0] is command name, it is not important. swig_paddle.__initPaddle__(args) sys.argv = old_argv def __monkeypatch_init_paddle__(): swig_paddle.__initPaddle__ = swig_paddle.initPaddle swig_paddle.initPaddle = initializePaddle class __ParameterCallbackWrapper__(swig_paddle.UpdateCallback): """ Wrap the python callable object to paddle.UpdateCallback. INTERNAL USE ONLY. """ def __init__(self, callback): swig_paddle.UpdateCallback.__init__(self) self.callback = callback def apply(self, param): self.callback(param) @staticmethod def wrap(callback): """ Cast the python callable object/paddle.UpdateCallback to swig_paddle.UpdateCallback.__disown__ :param callback: callable or swig_paddle.UpdateCallback object. """ if isinstance(callback, swig_paddle.UpdateCallback): return callback.__disown__() elif isinstance(callback, weakref.ProxyType): raise RuntimeError("Should not pass __disown__ object") else: return __ParameterCallbackWrapper__(callback).__disown__() def __arguments_to_numpy__(i, arg): assert isinstance(arg, swig_paddle.Arguments) value = arg.getSlotValue(i) ids = arg.getSlotIds(i) if value is not None: assert isinstance(value, swig_paddle.Matrix) value = value.copyToNumpyMat() if ids is not None: assert isinstance(ids, swig_paddle.IVector) ids = ids.copyToNumpyArray() return {"value": value, "id": ids} def __monkeypatch_gradient_machine__(): """ Add some class methods to GradientMachine. This method should be only used internally. """ swig_paddle.GradientMachine.loadFromConfigFile = \ staticmethod(loadGradientMachine) def __matrix_to_numpy__(m): if isinstance(m, swig_paddle.Matrix): return m.copyToNumpyMat() elif isinstance(m, swig_paddle.IVector): return m.copyToNumpyArra() else: raise RuntimeError("Input arg should be matrix or vecotr.") def createFromConfigProto(protoObj, createMode=swig_paddle.CREATE_MODE_NORMAL, paramTypes=[ swig_paddle.PARAMETER_VALUE, swig_paddle.PARAMETER_GRADIENT, swig_paddle.PARAMETER_MOMENTUM ]): """ Create Gradient Machine From Proto object. :param protoObj: Model config :type protoObj: proto.ModelConfig_pb2.ModelConfig :param createMode: Create Mode, default is normal. :type createMode: int :param paramTypes: the gradient machine parameter type. :type paramTypes: list of int :return: paddle.GradientMachine """ assert isinstance(protoObj, paddle.proto.ModelConfig) return swig_paddle.GradientMachine.createByConfigProtoStr( protoObj.SerializeToString(), createMode, paramTypes) swig_paddle.GradientMachine.createFromConfigProto = \ staticmethod(createFromConfigProto) def forwardTest(self, inArgs): """ forwardTest. forward gradient machine in test mode, and return a numpy matrix dict. :param inArgs: The input arguments :type inArgs: paddle.Arguments :return: A dictionary with keys ['id', 'value'], each value is a numpy.ndarray. """ outArgs = swig_paddle.Arguments.createArguments(0) self.forward(inArgs, outArgs, swig_paddle.PASS_TEST) return [ __arguments_to_numpy__(i, outArgs) for i in xrange(outArgs.getSlotNum()) ] swig_paddle.GradientMachine.forwardTest = forwardTest # Monkey patching backward swig_paddle.GradientMachine.__backward__ = swig_paddle.GradientMachine.backward def backward(self, callback): """ GradientMachine Backward :param callback: a callback which parameter is (paddle.Parameter) or a paddle.UpdateCallback object. """ self.__backward__(__ParameterCallbackWrapper__.wrap(callback)) swig_paddle.GradientMachine.backward = backward # Monkey patching forwardBackward. swig_paddle.GradientMachine.__forwardBackward__ = \ swig_paddle.GradientMachine.forwardBackward def forwardBackward(self, inArgs, outArgs, passType, callback=swig_paddle.UpdateCallback()): """ GradientMachine forward backward. :param inArgs: Input Arguments for GradientMachine. :type inArgs: paddle.Arguments :param outArgs: Output Arguments for GradientMachine. :type outArgs: paddle.Arguments :param passType: gradient machine's pass type. :type passType: paddle.PassType :param callback: a callable object with arguments (paddle.Parameter) or a paddle.UpdateCallback it will be called when backward """ self.__forwardBackward__(inArgs, outArgs, passType, __ParameterCallbackWrapper__.wrap(callback)) swig_paddle.GradientMachine.forwardBackward = forwardBackward def getParameters(self): return (self.getParameter(i) for i in xrange(self.getParameterSize())) swig_paddle.GradientMachine.getParameters = getParameters def getLayerOutputs(self, layerNames): """ getLayerOutputs. get outputs of layers and return a numpy matrix dict. :param layerNames: layer names. :type layerNames: string or list. """ if isinstance(layerNames, basestring): layerNames = [layerNames] elif not isinstance(layerNames, list): raise RuntimeError("Input args shuld be string or a sting list.") output = dict() for name in layerNames: output[name] = __matrix_to_numpy__(self.getLayerOutput(name)) return output swig_paddle.GradientMachine.getLayerOutputs = getLayerOutputs def loadGradientMachine(config_filename, model_dir=None): """ Load a gradient machine from config file name/path. :param config_filename: The trainer config file name/path :param model_dir: The model parameter directory. None if same as the directory of config_filename :return: GradientMachine with some enhance methods. :rtype: paddle.GradientMachine """ trainer_config = swig_paddle.TrainerConfig.createFromTrainerConfigFile( config_filename) assert isinstance(trainer_config, swig_paddle.TrainerConfig) model_conf = trainer_config.getModelConfig() network = swig_paddle.GradientMachine.createByModelConfig(model_conf) assert isinstance(network, swig_paddle.GradientMachine) if model_dir is None: model_dir = os.path.dirname(config_filename) network.loadParameters(model_dir) return network def loadParameterFile(fn): """ Load Paddle Parameter file to numpy.ndarray :param fn: file name or file like object. :type fn: str or file like object. :return: numpy array :rtype: numpy.ndarray :raise: paddle.UnsupportError when parameter format is wrong. """ if isinstance(fn, str): with open(fn, 'rb') as f: return loadParameterFile(f) elif hasattr(fn, 'read'): # File like object version, = struct.unpack('i', fn.read(4)) if version != 0: raise swig_paddle.UnsupportError() value_length, = struct.unpack("I", fn.read(4)) if value_length != 4 and value_length != 8: raise swig_paddle.UnsupportError() dtype = 'float32' if value_length == 4 else 'float64' param_size, = struct.unpack("L", fn.read(8)) value = numpy.fromfile(fn, dtype) if len(value) != param_size: raise swig_paddle.UnsupportError() return value else: raise swig_paddle.UnsupportError() class DataProviderWrapperConverter(object): """ A class convert DataFormat from PyDataProvider Wrapper to py_paddle.paddle.Arguemnts. """ class DenseValueConverter(object): """ Internal class """ def __init__(self, header_def): self.__dim__ = header_def.dim self.buf = [] def append(self, other): assert len(other) == self.__dim__ self.buf += other def __call__(self, slot_idx, arg): mat = swig_paddle.Matrix.createDense(self.buf, len(self.buf) / self.__dim__, self.__dim__) arg.setSlotValue(slot_idx, mat) class IdValueConverter(object): """ Internal class """ def __init__(self, *args): self.buf = [] def append(self, other): assert isinstance(other, int) self.buf.append(other) def __call__(self, slot_idx, arg): arg.setSlotIds(slot_idx, swig_paddle.IVector.create(self.buf)) class SparseNonValueConverter(object): """ Internal class """ def __init__(self, slot_def): self.indices = [0] self.cols = [] self.dim = slot_def.dim def append(self, other): self.indices.append(self.indices[-1] + len(other)) self.cols += other def __call__(self, slot_idx, arg): mat = swig_paddle.Matrix.createSparse( len(self.indices) - 1, self.dim, len(self.cols), True) assert isinstance(mat, swig_paddle.Matrix) mat.sparseCopyFrom(self.indices, self.cols) self.putIntoArg(slot_idx, arg, mat) def putIntoArg(self, slot_idx, arg, mat): arg.setSlotValue(slot_idx, mat) class SparseValueConverter(SparseNonValueConverter): """ Internal class """ def __init__(self, slot_def): super(DataProviderWrapperConverter.SparseValueConverter, self).__init__(slot_def) self.values = [] def append(self, other): super(DataProviderWrapperConverter.SparseValueConverter, self).append(map(lambda x: x[0], other)) self.values += map(lambda x: x[1], other) def __call__(self, slot_idx, arg): mat = swig_paddle.Matrix.createSparse( len(self.indices) - 1, self.dim, len(self.cols), False) assert isinstance(mat, swig_paddle.Matrix) mat.sparseCopyFrom(self.indices, self.cols, self.values) self.putIntoArg(slot_idx, arg, mat) __SLOT_VALUE_CONVERTER_MAP__ = { paddle.trainer.PyDataProviderWrapper.DenseSlot: DenseValueConverter, paddle.trainer.PyDataProviderWrapper.IndexSlot: IdValueConverter, paddle.trainer.PyDataProviderWrapper.SparseNonValueSlot: SparseNonValueConverter, paddle.trainer.PyDataProviderWrapper.SparseValueSlot: SparseValueConverter } def __init__(self, use_seq, header): """ Ctor :param use_seq: True if use sequence. :param header: List of slots type, trainer.PyDataProviderWrapper.SlotType """ self.__use_seq__ = use_seq self.__header__ = header def convert(self, wrapper_data, argument=None): """ Convert PyDataProviderWrapper format to paddle.Argument :param wrapper_data: PyDataProviderWrapper yield's data list. :param argument: The output paddle.Arguments. If it is not None, it will assign data in this arguments, else it will create new arguments. :return: arguments that contains data. :rtype: paddle.Arguments """ if argument is None: argument = swig_paddle.Arguments.createArguments(0) assert isinstance(argument, swig_paddle.Arguments) argument.resize(len(self.__header__)) values = map( lambda x: DataProviderWrapperConverter.__SLOT_VALUE_CONVERTER_MAP__[x.__class__](x), self.__header__) if self.__use_seq__: seq_dim = [[] for _ in xrange(self.__header__.__len__())] seq_start_pos = [[0] for _ in xrange(self.__header__.__len__())] for each_sample in wrapper_data: for slot_idx, sequence in enumerate(each_sample): for raw_data in sequence: values[slot_idx].append(raw_data) seq_start_pos[slot_idx].append(seq_start_pos[slot_idx][-1] + len(sequence)) seq_dim[slot_idx].append(len(sequence)) for slot_idx in xrange(len(self.__header__)): argument.setSlotSequenceDim( slot_idx, swig_paddle.IVector.create(seq_dim[slot_idx])) argument.setSlotSequenceStartPositions( slot_idx, swig_paddle.IVector.create(seq_start_pos[slot_idx])) else: for each_sample in wrapper_data: for raw_data, value in zip(each_sample, values): value.append(raw_data) for i, v in enumerate(values): v(i, argument) return argument def __call__(self, wrapper_data, argument=None): """ Invoke self.convert. See documents in self.convert. """ return self.convert(wrapper_data, argument) def __monkey_patch_protobuf_objects__(): def ParameterConfig_toProto(self): """ Convert paddle.ParameterConfig to proto.ParameterConfig_pb2.ParameterConfig :return: proto.ParameterConfig_pb2.ParameterConfig object. """ param_conf = paddle.proto.ParameterConfig_pb2.ParameterConfig() param_conf.ParseFromString(self.toProtoString()) return param_conf swig_paddle.ParameterConfig.toProto = ParameterConfig_toProto def OptimizationConfig_toProto(self): """ Convert paddle.OptimizationConfig to proto.TrainerConfig_pb2.OptimizationConfig :return: proto.TrainerConfig_pb2.OptimizationConfig """ opt_conf = proto.TrainerConfig_pb2.OptimizationConfig() opt_conf.ParseFromString(self.toProtoString()) return opt_conf swig_paddle.OptimizationConfig.toProto = OptimizationConfig_toProto def OptimizationConfig_createFromProto(protoObj): """ Create a new paddle.OptimizationConfig from proto.TrainerConfig_pb2.OptimizationConfig :param protoObj: proto.TrainerConfig_pb2.OptimizationConfig :return: paddle.OptimizationConfig """ assert isinstance(protoObj, paddle.proto.OptimizationConfig) return swig_paddle.OptimizationConfig.createFromProtoString( protoObj.SerializeToString()) swig_paddle.OptimizationConfig.createFromProto = staticmethod( OptimizationConfig_createFromProto) def TrainerConfig_createFromProto(protoObj): """ Create a new paddle.TrainerConfig from proto.OptimizationConfig :param protoObj: proto.TrainerConfig :return: paddle.TrainerConfig """ assert isinstance(protoObj, paddle.proto.TrainerConfig) return swig_paddle.TrainerConfig.createFromProtoString( protoObj.SerializeToString()) swig_paddle.TrainerConfig.createFromProto = staticmethod( TrainerConfig_createFromProto) def __monkey_patch_parameter__(): def getBufs(self): """ get all parameter vectors. NOTE: the return value is a generator. Maybe you need to cast to list or tuple or something else. :return: generator of all parameter vectors. :rtype: generator """ return (self.getBuf(i) for i in xrange(swig_paddle.NUM_PARAMETER_TYPES)) swig_paddle.Parameter.getBufs = getBufs def __monkey_patch_trainer__(): swig_paddle.Trainer.__create__ = staticmethod(swig_paddle.Trainer.create) def Trainer_create(config, model=None): """ Create a trainer for model with TrainerCOnfig trainer_config trainer_config.model_config will be ignored when model is supplied. Trainer.trainOneBatch() and Trainer.forwardOneBatch() can be used only when trainer_config.data_config is set. A typical usage for Trainer is: .. code-block:: python trainer = Trainer.create(trainer_config, model) for p in xrange(num_passes) while True: data = get_next_batch(batch_size) if not data: break trainer.trainOneDataBatch(batch_size, data) trainer.finishTrainPass() trainer.finishTrain() The trainer will take care of logging, model saving, distributed training, etc. :param config: trainer configuration :type config: paddle.proto.TrainerConfig :param model: the model to be trained :type model: swig_paddle.GradientMachine :return: a trainer :rtype swig_paddle.Trainer """ assert isinstance(config, paddle.proto.TrainerConfig) if model is not None: assert isinstance(model, swig_paddle.GradientMachine) return swig_paddle.Trainer.__create__( swig_paddle.TrainerConfig.createFromProto(config), model) swig_paddle.Trainer.create = staticmethod(Trainer_create) swig_paddle.Trainer.__getForwardOutput__ = \ swig_paddle.Trainer.getForwardOutput def getForwardOutput(self): """ Get the netword outputs from the previous trainOneBatch(), trainOneDataBatch(), testOneDataPatch(), or forwardOneBatch() call. :return: list of dictionary with keys ['id', 'value'], each value is a numpy.ndarray. """ outArgs = self.__getForwardOutput__() return [ __arguments_to_numpy__(i, outArgs) for i in xrange(outArgs.getSlotNum()) ] swig_paddle.Trainer.getForwardOutput = getForwardOutput def monkeypatches(): patches = [__monkeypatch_init_paddle__, __monkeypatch_gradient_machine__, __monkey_patch_protobuf_objects__, __monkey_patch_parameter__, __monkey_patch_trainer__] for patch in patches: patch()