softmax_cudnn_op.cu 19.0 KB
Newer Older
Z
zlsh80826 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_cuda_utils.h"
#include "paddle/fluid/operators/softmax_op.h"
G
GaoWei8 已提交
18
#include "paddle/fluid/platform/cuda_device_function.h"
Z
zlsh80826 已提交
19
#include "paddle/fluid/platform/cudnn_helper.h"
G
GaoWei8 已提交
20
#include "paddle/fluid/platform/gpu_launch_config.h"
Z
zlsh80826 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

namespace paddle {
namespace platform {
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

namespace paddle {
namespace operators {

using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
using Tensor = framework::Tensor;

G
GaoWei8 已提交
36 37 38 39 40 41 42
#define LAUNCH_SOFTMAX_WARP_FORWARD(Log2Elements)                  \
  case Log2Elements:                                               \
    WarpSoftmaxForward<T, float, Log2Elements><<<                  \
        blocks, threads, 0, ctx.cuda_device_context().stream()>>>( \
        out_data, x->data<T>(), N, dim, dim);                      \
    break;

G
GaoWei8 已提交
43 44 45 46 47 48 49
#define LAUNCH_SOFTMAX_WARP_BACKWARD(Log2Elements)                 \
  case Log2Elements:                                               \
    softmax_warp_backward<T, float, Log2Elements><<<               \
        blocks, threads, 0, ctx.cuda_device_context().stream()>>>( \
        dx_data, mul_grad.data<T>(), out->data<T>(), N, dim, dim); \
    break;

Z
zlsh80826 已提交
50 51 52 53 54 55 56 57
static inline int SizeOutAxis(const int axis, DDim dims) {
  int size = 1;
  for (int i = axis + 1; i < dims.size(); i++) {
    size *= dims[i];
  }
  return size;
}

G
GaoWei8 已提交
58 59 60 61 62 63
int log2_ceil(int value) {
  int log2_value = 0;
  while ((1 << log2_value) < value) ++log2_value;
  return log2_value;
}

Z
zlsh80826 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
template <typename T, int VLEN>
union vec_t {
  static_assert(sizeof(T) == -1, "vec_t is only available by specialization.");
};

template <>
union vec_t<float, 4> {
  float4 s;
  float v[4];
};

template <>
union vec_t<platform::float16, 4> {
  int2 s;
  platform::float16 v[4];
};

template <typename T, typename VECT, int VPT, int WARP_PER_BLOCK>
__global__ void VecSoftmaxForward(T* dst, const T* src, const int batch_size,
                                  const int softmax_ele) {
  int offset = blockIdx.x * softmax_ele * WARP_PER_BLOCK;
  int idx = threadIdx.x * VPT;

  VECT buf = reinterpret_cast<const VECT*>(&src[offset + idx])[0];
  T* bufp = reinterpret_cast<T*>(&buf);
  float4 val4;
  float* val4p = reinterpret_cast<float*>(&val4);
  for (int i = 0; i < VPT; ++i) {
    val4p[i] = static_cast<float>(bufp[i]);
  }
  float val = val4.x + val4.y + val4.z + val4.w;
  float max_val = math::warpReduceMax<float>(
      max(max(val4.x, val4.y), max(val4.z, val4.w)), 0xffffffff);
  float4 tmp4 = make_float4(__expf(val4.x - max_val), __expf(val4.y - max_val),
                            __expf(val4.z - max_val), __expf(val4.w - max_val));
  float* tmp4p = reinterpret_cast<float*>(&tmp4);
  float invsum = 1.f / (math::warpReduceSum<float>(
                            tmp4.x + tmp4.y + tmp4.z + tmp4.w, 0xffffffff) +
                        1e-6f);
  for (int i = 0; i < VPT; ++i) {
    bufp[i] = static_cast<T>(tmp4p[i] * invsum);
  }
  reinterpret_cast<VECT*>(&dst[offset + idx])[0] = buf;
}

G
GaoWei8 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
template <typename T, int WARP_BATCH, int WARP_SIZE_SOFTMAX>
__device__ __forceinline__ void warp_reduce_sum(T* sum) {
#pragma unroll
  for (int offset = WARP_SIZE_SOFTMAX / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < WARP_BATCH; ++i) {
      T sum_val = platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
      sum[i] = sum[i] + sum_val;
    }
  }
}

template <typename T, int WARP_BATCH, int WARP_SIZE_SOFTMAX>
__device__ __forceinline__ void warp_reduce_max(T* sum) {
#pragma unroll
  for (int offset = WARP_SIZE_SOFTMAX / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < WARP_BATCH; ++i) {
      T max_val = platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
      sum[i] = max(sum[i], max_val);
    }
  }
}

template <typename T, typename AccT, int Log2Elements>
__global__ void WarpSoftmaxForward(T* dst, const T* src, const int batch_size,
                                   const int stride, const int element_count) {
  constexpr int next_power_of_two = 1 << Log2Elements;
  constexpr int warp_size_softmax =
      (next_power_of_two < 32) ? next_power_of_two : 32;
  constexpr int WARP_ITERATIONS = next_power_of_two / warp_size_softmax;
  constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;

  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;

  int local_batches = batch_size - first_batch;
  if (local_batches > WARP_BATCH) {
    local_batches = WARP_BATCH;
  }

  int local_idx = threadIdx.x;

  src += first_batch * stride + local_idx;
  dst += first_batch * stride + local_idx;

  // load data from global memory
  AccT elements[WARP_BATCH][WARP_ITERATIONS];
  for (int i = 0; i < WARP_BATCH; ++i) {
    int batch_element_count = (i >= local_batches) ? 0 : element_count;
    for (int it = 0; it < WARP_ITERATIONS; ++it) {
      int element_index = local_idx + it * warp_size_softmax;
      if (element_index < batch_element_count) {
        elements[i][it] =
            static_cast<float>(src[i * element_count + it * warp_size_softmax]);
      } else {
        elements[i][it] = -std::numeric_limits<AccT>::infinity();
      }
    }
  }

  // compute max_value
  AccT max_value[WARP_BATCH];
#pragma unroll
  for (int i = 0; i < WARP_BATCH; ++i) {
    max_value[i] = elements[i][0];
#pragma unroll
    for (int it = 1; it < WARP_ITERATIONS; ++it) {
      max_value[i] =
          (max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it];
    }
  }
  warp_reduce_max<AccT, WARP_BATCH, warp_size_softmax>(max_value);

  AccT sum[WARP_BATCH]{0.0f};
#pragma unroll
  for (int i = 0; i < WARP_BATCH; ++i) {
#pragma unroll
    for (int it = 0; it < WARP_ITERATIONS; ++it) {
      elements[i][it] = (std::exp((elements[i][it] - max_value[i])));
      sum[i] += elements[i][it];
    }
  }
  warp_reduce_sum<AccT, WARP_BATCH, warp_size_softmax>(sum);

// store result
#pragma unroll
  for (int i = 0; i < WARP_BATCH; ++i) {
    if (i >= local_batches) break;
#pragma unroll
    for (int it = 0; it < WARP_ITERATIONS; ++it) {
      int element_index = local_idx + it * warp_size_softmax;
      if (element_index < element_count) {
        dst[i * element_count + it * warp_size_softmax] =
            elements[i][it] / sum[i];
      } else {
        break;
      }
    }
  }
}

G
GaoWei8 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
template <typename T, typename AccT, int Log2Elements>
__global__ void softmax_warp_backward(T* gradInput, const T* grad,
                                      const T* output, int batch_size,
                                      int stride, int element_count) {
  constexpr int next_power_of_two = 1 << Log2Elements;
  constexpr int warp_size_softmax =
      (next_power_of_two < 32) ? next_power_of_two : 32;
  constexpr int WARP_ITERATIONS = next_power_of_two / warp_size_softmax;
  constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;

  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;

  int local_batches = batch_size - first_batch;
  if (local_batches > WARP_BATCH) {
    local_batches = WARP_BATCH;
  }

  int local_idx = threadIdx.x % warp_size_softmax;

  int thread_offset = first_batch * stride + local_idx;
  grad += thread_offset;
  output += thread_offset;
  gradInput += thread_offset;

  // load data from global memory
  AccT grad_reg[WARP_BATCH][WARP_ITERATIONS];
  AccT output_reg[WARP_BATCH][WARP_ITERATIONS];
  for (int i = 0; i < WARP_BATCH; ++i) {
    int batch_element_count = (i >= local_batches) ? 0 : element_count;
    for (int it = 0; it < WARP_ITERATIONS; ++it) {
      int element_index = local_idx + it * warp_size_softmax;
      if (element_index < batch_element_count) {
        grad_reg[i][it] =
            static_cast<AccT>(grad[i * element_count + it * warp_size_softmax]);
        output_reg[i][it] = static_cast<AccT>(
            output[i * element_count + it * warp_size_softmax]);
      } else {
        grad_reg[i][it] = AccT(0);
        output_reg[i][it] = AccT(0);
      }
    }
  }

  AccT sum[WARP_BATCH];
#pragma unroll
  for (int i = 0; i < WARP_BATCH; ++i) {
    sum[i] = grad_reg[i][0];
#pragma unroll
    for (int it = 1; it < WARP_ITERATIONS; ++it) {
      sum[i] += grad_reg[i][it];
    }
  }
  warp_reduce_sum<AccT, WARP_BATCH, warp_size_softmax>(sum);

// store result
#pragma unroll
  for (int i = 0; i < WARP_BATCH; ++i) {
    if (i >= local_batches) break;
#pragma unroll
    for (int it = 0; it < WARP_ITERATIONS; ++it) {
      int element_index = local_idx + it * warp_size_softmax;
      if (element_index < element_count) {
        // compute gradients
        gradInput[i * element_count + it * warp_size_softmax] =
            (grad_reg[i][it] - output_reg[i][it] * sum[i]);
      }
    }
  }
}

template <typename T>
__global__ void MultiplyCUDAKernel(T* C, const T* A, const T* B, int N) {
  CUDA_KERNEL_LOOP(i, N) {
    C[i] = static_cast<T>(static_cast<float>(A[i]) * static_cast<float>(B[i]));
  }
}

Z
zlsh80826 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
template <typename T, int VPT, int WARP_PER_BLOCK>
__global__ void VecSoftmaxBackward(T* dst, const T* grad, const T* src,
                                   const int batch_size,
                                   const int softmax_ele) {
  const int offset =
      blockIdx.x * softmax_ele * WARP_PER_BLOCK + threadIdx.x * VPT;

  float local_sum_gy = 0.f;
  vec_t<T, VPT> local_grad;
  vec_t<T, VPT> local_src;

  local_grad.s =
      reinterpret_cast<const decltype(local_grad.s)*>(&grad[offset])[0];
  local_src.s = reinterpret_cast<const decltype(local_src.s)*>(&src[offset])[0];

  for (int i = 0; i < VPT; ++i) {
    local_sum_gy += static_cast<float>(local_grad.v[i]) *
                    static_cast<float>(local_src.v[i]);
  }
  float sum_gy = math::warpReduceSum<float>(local_sum_gy, 0xffffffff);

  vec_t<T, VPT> local_dst;
  for (int i = 0; i < VPT; ++i) {
    local_dst.v[i] =
        static_cast<T>(static_cast<float>(local_src.v[i]) *
                       (static_cast<float>(local_grad.v[i]) - sum_gy));
  }
  reinterpret_cast<decltype(local_dst.s)*>(&dst[offset])[0] = local_dst.s;
}

template <typename T>
class SoftmaxCUDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());
    auto* out_data = out->data<T>();

    auto dims = x->dims();
    const int rank = dims.size();
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), rank);
    const int dim = dims[axis];
    const int N = SizeToAxis(axis, dims);
    const int D = SizeOutAxis(axis, dims);

G
GaoWei8 已提交
333 334
    constexpr int max_dim = 320;
    bool optimize = false;
Z
zlsh80826 已提交
335
    constexpr int warps_per_block = 4;
G
GaoWei8 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    if (D == 1 && dim <= max_dim && sizeof(T) <= 4) {
      if (dim == 128 && N % warps_per_block == 0) {
        optimize = true;
        // a warp for a batch, 4 elements for a thread, only support the softmax
        // dim size = 128 currently
        if (sizeof(T) == 2) {
          VecSoftmaxForward<T, int2, 4, warps_per_block><<<
              N / warps_per_block, warps_per_block * WARP_SIZE, 0,
              ctx.cuda_device_context().stream()>>>(out_data, x->data<T>(), N,
                                                    dim);
        } else if (sizeof(T) == 4) {
          VecSoftmaxForward<T, int4, 4, warps_per_block><<<
              N / warps_per_block, warps_per_block * WARP_SIZE, 0,
              ctx.cuda_device_context().stream()>>>(out_data, x->data<T>(), N,
                                                    dim);
        } else {
          assert(false && "not support");
        }
      } else if (dim < max_dim) {
        optimize = true;
        int log2_elements = static_cast<int>(log2_ceil(dim));
        const int next_power_of_two = 1 << log2_elements;

        int warp_size = (next_power_of_two < 32) ? next_power_of_two : 32;

        int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;

        // use 128 threads per block to maximimize gpu utilization
        constexpr int threads_per_block = 128;

        int warps_per_block = (threads_per_block / warp_size);
        int batches_per_block = warps_per_block * batches_per_warp;
        int blocks = (N + batches_per_block - 1) / batches_per_block;
        dim3 threads(warp_size, warps_per_block, 1);

        switch (log2_elements) {
          LAUNCH_SOFTMAX_WARP_FORWARD(0);  // 1
          LAUNCH_SOFTMAX_WARP_FORWARD(1);  // 2
          LAUNCH_SOFTMAX_WARP_FORWARD(2);  // 4
          LAUNCH_SOFTMAX_WARP_FORWARD(3);  // 8
          LAUNCH_SOFTMAX_WARP_FORWARD(4);  // 16
          LAUNCH_SOFTMAX_WARP_FORWARD(5);  // 32
          LAUNCH_SOFTMAX_WARP_FORWARD(6);  // 64
          LAUNCH_SOFTMAX_WARP_FORWARD(7);  // 128
          LAUNCH_SOFTMAX_WARP_FORWARD(8);  // 256
          LAUNCH_SOFTMAX_WARP_FORWARD(9);  // 512
          default:
            break;
        }
Z
zlsh80826 已提交
385
      }
G
GaoWei8 已提交
386 387
    }
    if (!optimize) {
Z
zlsh80826 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
      ScopedTensorDescriptor desc;
      std::vector<int> tensor_dims = {N, dim, D, 1};
      DataLayout layout = DataLayout::kNCHW;
      cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);

      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto handle = dev_ctx.cudnn_handle();
      auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                   : CUDNN_SOFTMAX_MODE_CHANNEL;

      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxForward(
          handle, CUDNN_SOFTMAX_ACCURATE, mode,
          platform::CudnnDataType<T>::kOne(), desc_, x->data<T>(),
          platform::CudnnDataType<T>::kZero(), desc_, out_data));
    }
  }
};

template <typename T>
class SoftmaxGradCUDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    dx->mutable_data<T>(ctx.GetPlace());
    auto* dx_data = dx->data<T>();

    auto dims = out->dims();
    const int rank = dims.size();
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), rank);
    const int dim = dims[axis];
    const int N = SizeToAxis(axis, dims);
    const int D = SizeOutAxis(axis, dims);

    constexpr int warps_per_block = 4;
    constexpr bool warp_softmax_available =
        std::is_same<T, float>::value ||
        std::is_same<T, platform::float16>::value;
G
GaoWei8 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
    bool optimize = false;
    if (D == 1 && warp_softmax_available) {
      if (dim == 128 && N % warps_per_block == 0) {
        optimize = true;
        if (std::is_same<T, float>::value) {
          VecSoftmaxBackward<float, 4, warps_per_block><<<
              N / warps_per_block, warps_per_block * WARP_SIZE, 0,
              ctx.cuda_device_context().stream()>>>(dx->data<float>(),
                                                    dout->data<float>(),
                                                    out->data<float>(), N, dim);
        } else if (std::is_same<T, platform::float16>::value) {
          VecSoftmaxBackward<platform::float16, 4, warps_per_block><<<
              N / warps_per_block, warps_per_block * WARP_SIZE, 0,
              ctx.cuda_device_context().stream()>>>(
              dx->data<platform::float16>(), dout->data<platform::float16>(),
              out->data<platform::float16>(), N, dim);
        } else {
          PADDLE_ENFORCE_EQ(
              warp_softmax_available, true,
              platform::errors::Unimplemented(
                  "Warp softmax backward is only available for fp32 and fp16"));
        }
      } else if (dim < 40 && dim % 32 != 0) {
        optimize = true;
        Tensor mul_grad;
        int numel = N * dim;
        mul_grad.mutable_data<T>({numel}, ctx.GetPlace());

        auto stream = ctx.cuda_device_context().stream();
        auto& dev_ctx =
            ctx.template device_context<platform::CUDADeviceContext>();
        auto config = GetGpuLaunchConfig1D(dev_ctx, numel);

        MultiplyCUDAKernel<T><<<config.block_per_grid.x,
                                config.thread_per_block.x, 0, stream>>>(
            mul_grad.data<T>(), dout->data<T>(), out->data<T>(), numel);

        int log2_elements = log2_ceil(dim);
        const int next_power_of_two = 1 << log2_elements;

        int warp_size = (next_power_of_two < 32) ? next_power_of_two : 32;

        int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;

        constexpr int threads_per_block = 128;

        int warps_per_block = (threads_per_block / warp_size);
        int batches_per_block = warps_per_block * batches_per_warp;
        int blocks = (N + batches_per_block - 1) / batches_per_block;
        dim3 threads(warp_size, warps_per_block, 1);

        switch (log2_elements) {
          LAUNCH_SOFTMAX_WARP_BACKWARD(0);  // 1
          LAUNCH_SOFTMAX_WARP_BACKWARD(1);  // 2
          LAUNCH_SOFTMAX_WARP_BACKWARD(2);  // 4
          LAUNCH_SOFTMAX_WARP_BACKWARD(3);  // 8
          LAUNCH_SOFTMAX_WARP_BACKWARD(4);  // 16
          LAUNCH_SOFTMAX_WARP_BACKWARD(5);  // 32
          LAUNCH_SOFTMAX_WARP_BACKWARD(6);  // 64
          LAUNCH_SOFTMAX_WARP_BACKWARD(7);  // 128
          LAUNCH_SOFTMAX_WARP_BACKWARD(8);  // 256
          LAUNCH_SOFTMAX_WARP_BACKWARD(9);  // 512
          default:
            break;
        }
Z
zlsh80826 已提交
493
      }
G
GaoWei8 已提交
494 495
    }
    if (!optimize) {
Z
zlsh80826 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
      ScopedTensorDescriptor desc;
      std::vector<int> tensor_dims = {N, dim, D, 1};
      DataLayout layout = DataLayout::kNCHW;
      cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);

      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto handle = dev_ctx.cudnn_handle();
      auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                   : CUDNN_SOFTMAX_MODE_CHANNEL;

      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxBackward(
          handle, CUDNN_SOFTMAX_ACCURATE, mode,
          platform::CudnnDataType<T>::kOne(), desc_, out->data<T>(), desc_,
          dout->data<T>(), platform::CudnnDataType<T>::kZero(), desc_,
          dx_data));
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(softmax, CUDNN, plat::CUDAPlace,
                   ops::SoftmaxCUDNNKernel<float>,
                   ops::SoftmaxCUDNNKernel<double>,
                   ops::SoftmaxCUDNNKernel<plat::float16>);
REGISTER_OP_KERNEL(softmax_grad, CUDNN, plat::CUDAPlace,
                   ops::SoftmaxGradCUDNNKernel<float>,
                   ops::SoftmaxGradCUDNNKernel<double>,
                   ops::SoftmaxGradCUDNNKernel<plat::float16>);