Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
180877e9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
180877e9
编写于
1月 13, 2021
作者:
G
GaoWei8
提交者:
GitHub
1月 13, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Softmax backward optimize (#30249)
* softmax backward optimize
上级
342d62de
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
152 addition
and
21 deletion
+152
-21
paddle/fluid/operators/softmax_cudnn_op.cu
paddle/fluid/operators/softmax_cudnn_op.cu
+152
-21
未找到文件。
paddle/fluid/operators/softmax_cudnn_op.cu
浏览文件 @
180877e9
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/gpu_launch_config.h"
namespace
paddle
{
namespace
platform
{
...
...
@@ -39,6 +40,13 @@ using Tensor = framework::Tensor;
out_data, x->data<T>(), N, dim, dim); \
break;
#define LAUNCH_SOFTMAX_WARP_BACKWARD(Log2Elements) \
case Log2Elements: \
softmax_warp_backward<T, float, Log2Elements><<< \
blocks, threads, 0, ctx.cuda_device_context().stream()>>>( \
dx_data, mul_grad.data<T>(), out->data<T>(), N, dim, dim); \
break;
static
inline
int
SizeOutAxis
(
const
int
axis
,
DDim
dims
)
{
int
size
=
1
;
for
(
int
i
=
axis
+
1
;
i
<
dims
.
size
();
i
++
)
{
...
...
@@ -199,6 +207,83 @@ __global__ void WarpSoftmaxForward(T* dst, const T* src, const int batch_size,
}
}
template
<
typename
T
,
typename
AccT
,
int
Log2Elements
>
__global__
void
softmax_warp_backward
(
T
*
gradInput
,
const
T
*
grad
,
const
T
*
output
,
int
batch_size
,
int
stride
,
int
element_count
)
{
constexpr
int
next_power_of_two
=
1
<<
Log2Elements
;
constexpr
int
warp_size_softmax
=
(
next_power_of_two
<
32
)
?
next_power_of_two
:
32
;
constexpr
int
WARP_ITERATIONS
=
next_power_of_two
/
warp_size_softmax
;
constexpr
int
WARP_BATCH
=
(
next_power_of_two
<=
128
)
?
2
:
1
;
int
first_batch
=
(
blockDim
.
y
*
blockIdx
.
x
+
threadIdx
.
y
)
*
WARP_BATCH
;
int
local_batches
=
batch_size
-
first_batch
;
if
(
local_batches
>
WARP_BATCH
)
{
local_batches
=
WARP_BATCH
;
}
int
local_idx
=
threadIdx
.
x
%
warp_size_softmax
;
int
thread_offset
=
first_batch
*
stride
+
local_idx
;
grad
+=
thread_offset
;
output
+=
thread_offset
;
gradInput
+=
thread_offset
;
// load data from global memory
AccT
grad_reg
[
WARP_BATCH
][
WARP_ITERATIONS
];
AccT
output_reg
[
WARP_BATCH
][
WARP_ITERATIONS
];
for
(
int
i
=
0
;
i
<
WARP_BATCH
;
++
i
)
{
int
batch_element_count
=
(
i
>=
local_batches
)
?
0
:
element_count
;
for
(
int
it
=
0
;
it
<
WARP_ITERATIONS
;
++
it
)
{
int
element_index
=
local_idx
+
it
*
warp_size_softmax
;
if
(
element_index
<
batch_element_count
)
{
grad_reg
[
i
][
it
]
=
static_cast
<
AccT
>
(
grad
[
i
*
element_count
+
it
*
warp_size_softmax
]);
output_reg
[
i
][
it
]
=
static_cast
<
AccT
>
(
output
[
i
*
element_count
+
it
*
warp_size_softmax
]);
}
else
{
grad_reg
[
i
][
it
]
=
AccT
(
0
);
output_reg
[
i
][
it
]
=
AccT
(
0
);
}
}
}
AccT
sum
[
WARP_BATCH
];
#pragma unroll
for
(
int
i
=
0
;
i
<
WARP_BATCH
;
++
i
)
{
sum
[
i
]
=
grad_reg
[
i
][
0
];
#pragma unroll
for
(
int
it
=
1
;
it
<
WARP_ITERATIONS
;
++
it
)
{
sum
[
i
]
+=
grad_reg
[
i
][
it
];
}
}
warp_reduce_sum
<
AccT
,
WARP_BATCH
,
warp_size_softmax
>
(
sum
);
// store result
#pragma unroll
for
(
int
i
=
0
;
i
<
WARP_BATCH
;
++
i
)
{
if
(
i
>=
local_batches
)
break
;
#pragma unroll
for
(
int
it
=
0
;
it
<
WARP_ITERATIONS
;
++
it
)
{
int
element_index
=
local_idx
+
it
*
warp_size_softmax
;
if
(
element_index
<
element_count
)
{
// compute gradients
gradInput
[
i
*
element_count
+
it
*
warp_size_softmax
]
=
(
grad_reg
[
i
][
it
]
-
output_reg
[
i
][
it
]
*
sum
[
i
]);
}
}
}
}
template
<
typename
T
>
__global__
void
MultiplyCUDAKernel
(
T
*
C
,
const
T
*
A
,
const
T
*
B
,
int
N
)
{
CUDA_KERNEL_LOOP
(
i
,
N
)
{
C
[
i
]
=
static_cast
<
T
>
(
static_cast
<
float
>
(
A
[
i
])
*
static_cast
<
float
>
(
B
[
i
]));
}
}
template
<
typename
T
,
int
VPT
,
int
WARP_PER_BLOCK
>
__global__
void
VecSoftmaxBackward
(
T
*
dst
,
const
T
*
grad
,
const
T
*
src
,
const
int
batch_size
,
...
...
@@ -340,28 +425,74 @@ class SoftmaxGradCUDNNKernel : public framework::OpKernel<T> {
constexpr
bool
warp_softmax_available
=
std
::
is_same
<
T
,
float
>::
value
||
std
::
is_same
<
T
,
platform
::
float16
>::
value
;
if
(
D
==
1
&&
dim
==
128
&&
N
%
warps_per_block
==
0
&&
warp_softmax_available
)
{
if
(
std
::
is_same
<
T
,
float
>::
value
)
{
VecSoftmaxBackward
<
float
,
4
,
warps_per_block
><<<
N
/
warps_per_block
,
warps_per_block
*
WARP_SIZE
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
dx
->
data
<
float
>
(),
dout
->
data
<
float
>
(),
out
->
data
<
float
>
(),
N
,
dim
);
}
else
if
(
std
::
is_same
<
T
,
platform
::
float16
>::
value
)
{
VecSoftmaxBackward
<
platform
::
float16
,
4
,
warps_per_block
><<<
N
/
warps_per_block
,
warps_per_block
*
WARP_SIZE
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
dx
->
data
<
platform
::
float16
>
(),
dout
->
data
<
platform
::
float16
>
(),
out
->
data
<
platform
::
float16
>
(),
N
,
dim
);
}
else
{
PADDLE_ENFORCE_EQ
(
warp_softmax_available
,
true
,
platform
::
errors
::
Unimplemented
(
"Warp softmax backward is only available for fp32 and fp16"
));
bool
optimize
=
false
;
if
(
D
==
1
&&
warp_softmax_available
)
{
if
(
dim
==
128
&&
N
%
warps_per_block
==
0
)
{
optimize
=
true
;
if
(
std
::
is_same
<
T
,
float
>::
value
)
{
VecSoftmaxBackward
<
float
,
4
,
warps_per_block
><<<
N
/
warps_per_block
,
warps_per_block
*
WARP_SIZE
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
dx
->
data
<
float
>
(),
dout
->
data
<
float
>
(),
out
->
data
<
float
>
(),
N
,
dim
);
}
else
if
(
std
::
is_same
<
T
,
platform
::
float16
>::
value
)
{
VecSoftmaxBackward
<
platform
::
float16
,
4
,
warps_per_block
><<<
N
/
warps_per_block
,
warps_per_block
*
WARP_SIZE
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
dx
->
data
<
platform
::
float16
>
(),
dout
->
data
<
platform
::
float16
>
(),
out
->
data
<
platform
::
float16
>
(),
N
,
dim
);
}
else
{
PADDLE_ENFORCE_EQ
(
warp_softmax_available
,
true
,
platform
::
errors
::
Unimplemented
(
"Warp softmax backward is only available for fp32 and fp16"
));
}
}
else
if
(
dim
<
40
&&
dim
%
32
!=
0
)
{
optimize
=
true
;
Tensor
mul_grad
;
int
numel
=
N
*
dim
;
mul_grad
.
mutable_data
<
T
>
({
numel
},
ctx
.
GetPlace
());
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
config
=
GetGpuLaunchConfig1D
(
dev_ctx
,
numel
);
MultiplyCUDAKernel
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
stream
>>>
(
mul_grad
.
data
<
T
>
(),
dout
->
data
<
T
>
(),
out
->
data
<
T
>
(),
numel
);
int
log2_elements
=
log2_ceil
(
dim
);
const
int
next_power_of_two
=
1
<<
log2_elements
;
int
warp_size
=
(
next_power_of_two
<
32
)
?
next_power_of_two
:
32
;
int
batches_per_warp
=
(
next_power_of_two
<=
128
)
?
2
:
1
;
constexpr
int
threads_per_block
=
128
;
int
warps_per_block
=
(
threads_per_block
/
warp_size
);
int
batches_per_block
=
warps_per_block
*
batches_per_warp
;
int
blocks
=
(
N
+
batches_per_block
-
1
)
/
batches_per_block
;
dim3
threads
(
warp_size
,
warps_per_block
,
1
);
switch
(
log2_elements
)
{
LAUNCH_SOFTMAX_WARP_BACKWARD
(
0
);
// 1
LAUNCH_SOFTMAX_WARP_BACKWARD
(
1
);
// 2
LAUNCH_SOFTMAX_WARP_BACKWARD
(
2
);
// 4
LAUNCH_SOFTMAX_WARP_BACKWARD
(
3
);
// 8
LAUNCH_SOFTMAX_WARP_BACKWARD
(
4
);
// 16
LAUNCH_SOFTMAX_WARP_BACKWARD
(
5
);
// 32
LAUNCH_SOFTMAX_WARP_BACKWARD
(
6
);
// 64
LAUNCH_SOFTMAX_WARP_BACKWARD
(
7
);
// 128
LAUNCH_SOFTMAX_WARP_BACKWARD
(
8
);
// 256
LAUNCH_SOFTMAX_WARP_BACKWARD
(
9
);
// 512
default:
break
;
}
}
}
else
{
}
if
(
!
optimize
)
{
ScopedTensorDescriptor
desc
;
std
::
vector
<
int
>
tensor_dims
=
{
N
,
dim
,
D
,
1
};
DataLayout
layout
=
DataLayout
::
kNCHW
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录