custom_operator.cc 36.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
32
#include "paddle/fluid/framework/pten_utils.h"
33 34 35
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"
36
#include "paddle/pten/api/all.h"
37
#include "paddle/pten/api/lib/api_declare.h"
38 39 40
#include "paddle/pten/api/lib/ext_compat_utils.h"
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/core/convert_utils.h"
41
#include "paddle/utils/any.h"
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
      func, platform::errors::NotFound(
                "Failed to load dynamic operator library, error message(%s).",
                errorno));
  return func;
}

inline bool IsGradVar(const std::string& var_name) {
  std::string suffix = kGradVarSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

69 70 71 72 73
inline bool IsDuplicableVar(const std::string& var_name) {
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

74 75 76 77 78 79 80 81 82 83
inline std::string NoGrad(const std::string& var_name) {
  std::string suffix = kGradVarSuffix;
  return var_name.substr(0, var_name.size() - kGradVarSuffixSize);
}

inline bool IsMemberOf(const std::vector<std::string>& vec,
                       const std::string& name) {
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

84 85 86 87 88 89 90 91 92 93 94 95 96
std::vector<std::string> ParseAttrStr(const std::string& attr) {
  auto split_pos = attr.find_first_of(":");
  PADDLE_ENFORCE_NE(split_pos, std::string::npos,
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

97
  VLOG(3) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];
98 99 100 101

  return rlt;
}

102 103 104 105 106 107 108 109
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
static void RunKernelFunc(const framework::ExecutionContext& ctx,
                          const paddle::KernelFunc& func,
                          const std::vector<std::string>& inputs,
110 111
                          const std::vector<std::string>& outputs,
                          const std::vector<std::string>& attrs) {
112
  VLOG(3) << "Custom Operator: Start run KernelFunc.";
113 114
  std::vector<paddle::experimental::Tensor> custom_ins;
  std::vector<std::vector<paddle::experimental::Tensor>> custom_vec_ins;
115
  for (auto& in_name : inputs) {
116
    VLOG(3) << "Custom Operator: input name - " << in_name;
117 118 119 120 121 122
    if (detail::IsDuplicableVar(in_name)) {
      // return const std::vector<const Tensor*>
      auto vec_x = ctx.MultiInput<Tensor>(in_name);
      PADDLE_ENFORCE_NE(vec_x.empty(), true,
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
123
      std::vector<paddle::experimental::Tensor> custom_vec_in;
124 125 126 127 128 129 130 131 132 133 134
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
            x, platform::errors::NotFound(
                   "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                   i, in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
                              i, in_name));
135
        paddle::experimental::Tensor custom_t;
136
        custom_t.set_impl(std::make_shared<pten::DenseTensor>(*x));
137 138 139 140 141 142 143 144 145 146
        custom_vec_in.emplace_back(custom_t);
      }
      custom_vec_ins.emplace_back(custom_vec_in);
    } else {
      auto* x = ctx.Input<Tensor>(in_name);
      PADDLE_ENFORCE_NOT_NULL(x, platform::errors::NotFound(
                                     "Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
147
      paddle::experimental::Tensor custom_in;
148
      custom_in.set_impl(std::make_shared<pten::DenseTensor>(*x));
149 150
      custom_ins.emplace_back(custom_in);
    }
151 152
  }

153
  std::vector<paddle::any> custom_attrs;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx.Attr<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx.Attr<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx.Attr<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx.Attr<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx.Attr<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx.Attr<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(ctx.Attr<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      custom_attrs.emplace_back(ctx.Attr<std::vector<int64_t>>(attr_name));
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(ctx.Attr<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
181
          "`std::vector<float>`, `std::vector<int64_t>`, "
182 183 184 185 186
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
187

188
  VLOG(3) << "Custom Operator: Run ComputeFunc.";
189
  try {
190
    auto outs = func(custom_ins, custom_vec_ins, custom_attrs);
191

192
    VLOG(3) << "Custom Operator: Share outputs into ExecutionContext.";
193
    for (size_t i = 0; i < outputs.size(); ++i) {
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
      auto out_name = outputs[i];
      if (detail::IsDuplicableVar(out_name)) {
        PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                       platform::errors::PreconditionNotMet(
                           "If custom operator's outputs contains `paddle::Vec("
                           ")` type, "
                           "it only can hold one output."));
        auto vec_true_outs = ctx.MultiOutput<Tensor>(out_name);
        PADDLE_ENFORCE_EQ(
            vec_true_outs.size(), outs.size(),
            platform::errors::InvalidArgument(
                "The number of element in custom operator outputs is wrong, "
                "expected contains %d Tensors, but actually contains %d "
                "Tensors.",
                vec_true_outs.size(), outs.size()));
        for (size_t j = 0; j < vec_true_outs.size(); ++j) {
210 211
          *vec_true_outs.at(j) =
              *std::dynamic_pointer_cast<pten::DenseTensor>(outs.at(j).impl());
212 213 214
        }
      } else {
        auto* true_out = ctx.Output<Tensor>(out_name);
215 216
        *true_out =
            *std::dynamic_pointer_cast<pten::DenseTensor>(outs.at(i).impl());
217
      }
218 219 220 221 222 223 224 225
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
        "Custom operator raises an unknown exception in rumtime."));
226 227 228
  }
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void RunInferShapeFunc(framework::InferShapeContext* ctx,
                              const paddle::InferShapeFunc& func,
                              const std::vector<std::string>& inputs,
                              const std::vector<std::string>& outputs,
                              const std::vector<std::string>& attrs) {
  std::vector<std::vector<int64_t>> input_shapes;
  std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;

  VLOG(3) << "Custom Operator: InferShape - get input ddim.";
  for (auto& in_name : inputs) {
    if (detail::IsDuplicableVar(in_name)) {
      OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
      auto vec_ddim = ctx->GetInputsDim(in_name);
      std::vector<std::vector<int64_t>> vec_shape;
      vec_shape.reserve(vec_ddim.size());
      std::transform(vec_ddim.begin(), vec_ddim.end(),
                     std::back_inserter(vec_shape),
                     [&](const DDim& ddim) -> std::vector<int64_t> {
                       return framework::vectorize(ddim);
                     });
      vec_input_shapes.emplace_back(vec_shape);
    } else {
      OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
      auto ddim = ctx->GetInputDim(in_name);
      input_shapes.emplace_back(framework::vectorize(ddim));
    }
  }

  std::vector<paddle::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
      // attr type, because the input type is std::vector<int64_t>, only
      // can use one rule to parse std::vector<int64_t> parameter
      continue;
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
          "`std::vector<float>`, `std::vector<std::string>`, "
          "Please check whether the attribute data type and "
          "data type string are matched.",
          attr_type_str));
    }
  }

  VLOG(3) << "Custom Operator: InferShape - calc output ddim.";
  auto output_shapes = func(input_shapes, vec_input_shapes, custom_attrs);

  VLOG(3) << "Custom Operator: InferShape - set output ddim.";
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      std::vector<DDim> vec_ddim;
      vec_ddim.reserve(output_shapes.size());
      std::transform(output_shapes.begin(), output_shapes.end(),
                     std::back_inserter(vec_ddim),
                     [&](const std::vector<int64_t>& shape) -> DDim {
                       return framework::make_ddim(shape);
                     });
      ctx->SetOutputsDim(out_name, vec_ddim);
    } else {
      ctx->SetOutputDim(out_name, framework::make_ddim(output_shapes[i]));
    }
  }
}

318 319 320 321 322 323 324 325 326
//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
327
    VLOG(3) << "Custom Operator: Dummy infer shape of custom operator.";
328 329 330 331 332 333 334 335 336 337 338 339 340
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
  framework::OpKernelType GetExpectedKernelType(
341
      const framework::ExecutionContext& ctx) const override {
342 343 344 345 346 347 348 349 350 351
    return framework::OpKernelType(proto::VarType::RAW, ctx.GetPlace());
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
352
      const OpKernelType& expected_kernel_type) const override {
353 354 355 356 357 358 359 360 361 362 363 364 365 366
    return OpKernelType(expected_kernel_type.data_type_,
                        expected_kernel_type.place_, tensor.layout());
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
367 368 369 370 371 372
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
373 374
    }
    for (auto& out_name : outputs_) {
375 376 377 378 379 380
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
381
    }
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
421
            "`std::vector<float>`, `std::vector<int64_t>`, "
422 423 424 425 426
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    AddComment(R"DOC(
Custom Operator.

According to the Tensor operation function implemented by the user 
independently of the framework, it is encapsulated into a framework 
operator to adapt to various execution scenarios such as dynamic graph, 
mode static graph mode, and inference mode.

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
      const OpDesc& fwd_op, const std::unordered_set<std::string>& no_grad_set,
      std::unordered_map<std::string, std::string>* grad_to_var,
      const std::vector<BlockDesc*>& grad_block, const std::string& name,
      const std::vector<std::string>& inputs,
      const std::vector<std::string>& outputs)
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
        outputs_(outputs) {}

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
469
      VLOG(3) << "Custom Operator: GradOpDescMaker - input: " << in_name;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
      if (!detail::IsGradVar(in_name)) {
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
486
      VLOG(3) << "Custom Operator: GradOpDescMaker - output: " << out_name;
487 488 489 490 491 492 493
      if (detail::IsDuplicableVar(out_name)) {
        grad_op->SetOutput(out_name,
                           this->InputGrad(detail::NoGrad(out_name),
                                           /*drop_empty_grad=*/false));
      } else {
        grad_op->SetOutput(out_name, this->InputGrad(detail::NoGrad(out_name)));
      }
494
    }
495
    grad_op->SetAttrMap(this->Attrs());
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
      const std::string& name, const std::vector<std::string>& inputs,
      const std::vector<std::string>& outputs)
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
        outputs_(outputs) {}

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
535
      VLOG(3) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
      if (!detail::IsGradVar(in_name)) {
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
552
      VLOG(3) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
553 554
      grad_op->SetOutput(out_name, this->InputGrad(detail::NoGrad(out_name)));
    }
555
    grad_op->SetAttrMap(this->Attrs());
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
};

//////////// Operator and Kernel Register //////////////

void RegisterOperatorKernelWithPlace(const std::string& name,
                                     const paddle::KernelFunc& kernel_func,
                                     const proto::VarType::Type type,
                                     const PlaceType& place,
                                     const std::vector<std::string>& inputs,
571 572
                                     const std::vector<std::string>& outputs,
                                     const std::vector<std::string>& attrs) {
573
  OpKernelType key(type, experimental::ConvertExtPlaceToInnerPlace(place));
574
  VLOG(3) << "Custom Operator: op kernel key: " << key;
575
  OperatorWithKernel::AllOpKernels()[name][key] =
576 577
      [kernel_func, inputs, outputs,
       attrs](const framework::ExecutionContext& ctx) {
578
        VLOG(3) << "Custom Operator: run custom kernel func in lambda.";
579
        RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs);
580 581 582 583 584 585
      };
}

void RegisterOperatorKernel(const std::string& name,
                            const paddle::KernelFunc& kernel_func,
                            const std::vector<std::string>& inputs,
586 587
                            const std::vector<std::string>& outputs,
                            const std::vector<std::string>& attrs) {
588
  VLOG(3) << "Custom Operator: op name in kernel: " << name;
589 590 591 592 593 594
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
  RegisterOperatorKernelWithPlace(name, kernel_func, proto::VarType::RAW,
595
                                  PlaceType::kCPU, inputs, outputs, attrs);
596
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
597
  RegisterOperatorKernelWithPlace(name, kernel_func, proto::VarType::RAW,
598 599
                                  PlaceType::kGPU, inputs, outputs, attrs);
#endif
600 601 602 603 604 605 606 607 608 609
}

void RegisterOperatorWithMetaInfo(
    const std::vector<OpMetaInfo>& op_meta_infos) {
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
610 611 612 613 614 615

  if (OpInfoMap::Instance().Has(op_name)) {
    LOG(WARNING) << "Operator (" << op_name << ")has been registered.";
    return;
  }

616 617 618 619 620 621 622
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

623 624
  VLOG(3) << "Custom Operator: forward, op name: " << op_name;
  VLOG(3) << "Custom Operator: forward, op inputs: "
625
          << string::join_strings(op_inputs, ',');
626
  VLOG(3) << "Custom Operator: forward, op outputs: "
627
          << string::join_strings(op_outputs, ',');
628
  VLOG(3) << "Custom Operator: forward, op attrs: "
629
          << string::join_strings(op_attrs, ',');
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

  // Op
  info.creator_ = [](const std::string& op_name, const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
      info.proto_->IsInitialized(), true,
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
          op_name, info.proto_->InitializationErrorString()));

  // InferShape
652 653 654 655 656 657 658 659
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
660 661 662
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
663 664 665 666 667 668 669
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
670 671 672
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
673 674 675
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

676
      VLOG(3) << "Custom Operator: Default InferShape - share ddim.";
677 678 679
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
680
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs,
681
                         infer_shape_func](InferShapeContext* ctx) {
682
      RunInferShapeFunc(ctx, infer_shape_func, op_inputs, op_outputs, op_attrs);
683 684
    };
  }
685 686

  // Infer Dtype
687 688 689 690 691 692 693 694
  if (infer_dtype_func == nullptr) {
    // use defalut InferDtype
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
695 696 697
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
698 699 700 701 702 703 704
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
705 706 707
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
708 709 710
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

711
      VLOG(3) << "Custom Operator: InferDtype - share dtype.";
712 713 714 715 716 717 718
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
    info.infer_var_type_ = [op_inputs, op_outputs,
                            infer_dtype_func](InferVarTypeContext* ctx) {
      std::vector<DataType> input_dtypes;
719
      std::vector<std::vector<DataType>> vec_input_dtypes;
720

721
      VLOG(3) << "Custom Operator: InferDtype - get input dtype.";
722
      for (auto& in_name : op_inputs) {
723 724 725 726
        if (detail::IsDuplicableVar(in_name)) {
          std::vector<DataType> vec_custom_dtype;
          for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
            auto dtype = ctx->GetInputDataType(in_name, i);
727
            vec_custom_dtype.emplace_back(pten::TransToPtenDataType(dtype));
728 729 730 731
          }
          vec_input_dtypes.emplace_back(vec_custom_dtype);
        } else {
          auto dtype = ctx->GetInputDataType(in_name);
732
          input_dtypes.emplace_back(pten::TransToPtenDataType(dtype));
733
        }
734
      }
735

736
      VLOG(3) << "Custom Operator: InferDtype - infer output dtype.";
737
      auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);
738

739
      VLOG(3) << "Custom Operator: InferDtype - set output dtype.";
740
      for (size_t i = 0; i < op_outputs.size(); ++i) {
741 742 743
        auto out_name = op_outputs[i];
        if (detail::IsDuplicableVar(out_name)) {
          for (size_t j = 0; j < output_dtypes.size(); ++j) {
744
            auto dtype = pten::TransToProtoVarType(output_dtypes[i]);
745 746 747
            ctx->SetOutputDataType(out_name, dtype, j);
          }
        } else {
748 749
          ctx->SetOutputDataType(out_name,
                                 pten::TransToProtoVarType(output_dtypes[i]));
750
        }
751 752 753
      }
    };
  }
754 755

  // Kernel func
756
  RegisterOperatorKernel(op_name, kernel_fn, op_inputs, op_outputs, op_attrs);
757 758 759 760 761 762 763 764 765

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
766
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
767
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);
768
    auto& grad_infer_shape_fn = OpMetaInfoHelper::GetInferShapeFn(cur_grad_op);
769

770 771
    VLOG(3) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(3) << "Custom Operator: backward, op inputs: "
772
            << string::join_strings(grad_op_inputs, ',');
773
    VLOG(3) << "Custom Operator: backward, op outputs: "
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
            << string::join_strings(grad_op_outputs, ',');

    // GradOpDescMaker
    info.grad_op_maker_ = [grad_op_name, grad_op_inputs, grad_op_outputs](
        const OpDesc& fwd_op,
        const std::unordered_set<std::string>& no_grad_set,
        std::unordered_map<std::string, std::string>* grad_to_var,
        const std::vector<BlockDesc*>& grad_block) {
      CustomGradOpMaker<paddle::framework::OpDesc> maker(
          fwd_op, no_grad_set, grad_to_var, grad_block, grad_op_name,
          grad_op_inputs, grad_op_outputs);
      return maker();
    };

    // GradOpBaseMaker
    info.dygraph_grad_op_maker_ = [grad_op_name, grad_op_inputs,
                                   grad_op_outputs](
        const std::string& type,
        const imperative::NameVarBaseMap& var_base_map_in,
        const imperative::NameVarBaseMap& var_base_map_out,
        const framework::AttributeMap& attrs,
795
        const framework::AttributeMap& default_attrs,
796 797 798 799
        const std::map<std::string, std::string>& inplace_map) {
      CustomGradOpMaker<paddle::imperative::OpBase> maker(
          type, var_base_map_in, var_base_map_out, attrs, inplace_map,
          grad_op_name, grad_op_inputs, grad_op_outputs);
800
      maker.SetDygraphDefaultAttrsMap(default_attrs);
801 802 803 804 805 806 807 808 809 810 811 812 813
      return maker();
    };

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
    grad_info.creator_ = [](
        const std::string& type, const VariableNameMap& inputs,
        const VariableNameMap& outputs, const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };

814
    // Grad InferShape
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    if (grad_infer_shape_fn == nullptr) {
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs](InferShapeContext* ctx) {
        // 1. if forward input exists, gradient's shape is same with forward
        // input
        // default
        //    [Suitable for most situations]
        // 2. if forward input not exists, and only contains one grad input and
        // output,
        //    use grad input shape as grad output shape
        //    [Suitable for the situation that forward input is not used as
        //    backward input]
        for (auto& out_name : grad_op_outputs) {
          auto fwd_name = detail::NoGrad(out_name);
          if (detail::IsDuplicableVar(fwd_name)) {
            // Duplicable forward var must as backward input
831 832
            ctx->ShareDim(fwd_name, out_name);
          } else {
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
            if (ctx->HasInput(fwd_name)) {
              ctx->ShareDim(fwd_name, out_name);
            } else {
              PADDLE_ENFORCE_EQ(
                  grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                  true,
                  platform::errors::Unavailable(
                      "Custom grad operator infershape error. "
                      "If a custom grad operator contains only one input and "
                      "only one output, the input shape will be directly set "
                      "to "
                      "the output shape. Otherwise, Please set the forward "
                      "input "
                      "as the grad operator's input or  set the InferShapeFn "
                      "of custom grad operator by "
                      ".SetInferShapeFn(PD_INFER_SHAPE(...))"));
              ctx->ShareDim(grad_op_inputs[0], out_name);
            }
851 852
          }
        }
853 854 855 856 857 858 859 860
      };
    } else {
      grad_info.infer_shape_ = [grad_op_inputs, grad_op_outputs, grad_op_attrs,
                                grad_infer_shape_fn](InferShapeContext* ctx) {
        RunInferShapeFunc(ctx, grad_infer_shape_fn, grad_op_inputs,
                          grad_op_outputs, grad_op_attrs);
      };
    }
861 862 863

    // Kernel func
    RegisterOperatorKernel(grad_op_name, grad_kernel_fn, grad_op_inputs,
864
                           grad_op_outputs, grad_op_attrs);
865 866 867 868 869 870 871 872 873 874 875 876 877

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
    const paddle::OpMetaInfoMap& op_meta_info_map) {
  auto& meta_info_map = op_meta_info_map.GetMap();
878
  VLOG(3) << "Custom Operator: size of op meta info map - "
879 880 881
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
882
    VLOG(3) << "Custom Operator: pair first -> op name: " << pair.first;
883 884 885 886 887 888 889 890 891
    RegisterOperatorWithMetaInfo(pair.second);
  }
}

////////////////////// User APIs ///////////////////////

// load op api
void LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);
892
  VLOG(3) << "load custom_op lib: " << dso_name;
893 894 895 896 897 898 899 900 901 902
  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();

  RegisterOperatorWithMetaInfoMap(op_meta_info_map);
}

}  // namespace framework
}  // namespace paddle