“3df38f5cdd0866c1e78f1c2674d3d6cf3166d35f”上不存在“git@gitcode.net:RobotFutures/Paddle.git”
test_addmm_op.py 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17 18
import numpy as np
from op_test import OpTest
19 20

import paddle
21 22 23 24 25 26 27 28
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


class TestAddMMOp(OpTest):
    # test basic
    def setUp(self):
        self.op_type = "addmm"
H
hong 已提交
29
        self.python_api = paddle.addmm
30 31 32 33 34 35 36 37
        self.dtype = np.float64
        self.init_dtype_type()
        self.inputs = {
            'Input': np.random.random((100, 1)).astype(self.dtype),
            'X': np.random.random((100, 10)).astype(self.dtype),
            'Y': np.random.random((10, 20)).astype(self.dtype),
        }
        self.outputs = {
38 39
            'Out': self.inputs['Input']
            + np.dot(self.inputs['X'], self.inputs['Y'])
40 41 42 43 44 45
        }

    def init_dtype_type(self):
        pass

    def test_check_output(self):
H
hong 已提交
46
        self.check_output(check_eager=False)
47 48

    def test_check_grad_normal(self):
H
hong 已提交
49
        self.check_grad(['Input', 'X', 'Y'], 'Out', check_eager=False)
50 51

    def test_check_grad_x(self):
H
hong 已提交
52
        self.check_grad(['X'], 'Out', no_grad_set=None, check_eager=False)
53 54

    def test_check_grad_y(self):
H
hong 已提交
55
        self.check_grad(['Y'], 'Out', no_grad_set=None, check_eager=False)
56 57

    def test_check_grad_input(self):
H
hong 已提交
58
        self.check_grad(['Input'], 'Out', no_grad_set=None, check_eager=False)
59 60 61 62 63 64 65


class TestAddMMOpError(unittest.TestCase):
    # test error
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of addmm_op must be Variable.
Y
yaoxuefeng 已提交
66

67 68 69 70 71 72 73 74 75
            input = fluid.create_lod_tensor(
                np.array([[-1, -1], [-1, -1]]), [[2]], fluid.CPUPlace()
            )
            x1 = fluid.create_lod_tensor(
                np.array([[-1, -1], [-1, -1]]), [[2]], fluid.CPUPlace()
            )
            x2 = fluid.create_lod_tensor(
                np.array([[-1, -1], [-1, -1]]), [[2]], fluid.CPUPlace()
            )
76
            self.assertRaises(TypeError, paddle.addmm, input, x1, x2)
Y
yaoxuefeng 已提交
77

78
            # The input dtype of mul_op must be float32 or float64.
79 80 81 82 83 84 85 86 87 88 89 90
            input = fluid.layers.data(
                name='input',
                shape=[4, 4],
                dtype="int32",
                append_batch_size=False,
            )
            x3 = fluid.layers.data(
                name='x3', shape=[4, 4], dtype="int32", append_batch_size=False
            )
            x4 = fluid.layers.data(
                name='x4', shape=[4, 4], dtype="int32", append_batch_size=False
            )
91
            self.assertRaises(TypeError, paddle.addmm, input, x3, x4)
Y
yaoxuefeng 已提交
92
            # x and y dimension mismatch
93 94 95 96 97 98 99 100 101 102 103 104
            x5 = fluid.layers.data(
                name='x5',
                shape=[4, 5],
                dtype="float32",
                append_batch_size=False,
            )
            x6 = fluid.layers.data(
                name='x6',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False,
            )
Y
yaoxuefeng 已提交
105 106
            self.assertRaises(ValueError, paddle.addmm, input, x5, x6)
            # input and x are not broadcastable
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
            x7 = fluid.layers.data(
                name='x7',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False,
            )
            x8 = fluid.layers.data(
                name='x8',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False,
            )
            input1 = fluid.layers.data(
                name='input1',
                shape=[2, 4],
                dtype="float32",
                append_batch_size=False,
            )
Y
yaoxuefeng 已提交
125 126
            self.assertRaises(ValueError, paddle.addmm, input1, x7, x8)
            # input and x are not broadcastable
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
            x9 = fluid.layers.data(
                name='x9',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False,
            )
            x10 = fluid.layers.data(
                name='x10',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False,
            )
            input2 = fluid.layers.data(
                name='input2',
                shape=[1, 2],
                dtype="float32",
                append_batch_size=False,
            )
Y
yaoxuefeng 已提交
145
            self.assertRaises(ValueError, paddle.addmm, input2, x9, x10)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
            x11 = fluid.layers.data(
                name='x11',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False,
            )
            x12 = fluid.layers.data(
                name='x12',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False,
            )
            input3 = fluid.layers.data(
                name='input3',
                shape=[4, 2],
                dtype="float32",
                append_batch_size=False,
            )
Y
yaoxuefeng 已提交
164
            self.assertRaises(ValueError, paddle.addmm, input3, x11, x12)
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
            x13 = fluid.layers.data(
                name='x13',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False,
            )
            x14 = fluid.layers.data(
                name='x14',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False,
            )
            input4 = fluid.layers.data(
                name='input4',
                shape=[3, 1],
                dtype="float32",
                append_batch_size=False,
            )
Y
yaoxuefeng 已提交
183
            self.assertRaises(ValueError, paddle.addmm, input4, x13, x14)
184 185 186 187 188 189


class TestAddMMOp2(TestAddMMOp):
    # test alpha and beta
    def setUp(self):
        self.op_type = "addmm"
H
hong 已提交
190
        self.python_api = paddle.addmm
191 192 193 194 195 196 197 198 199 200 201
        self.dtype = np.float64
        self.init_dtype_type()
        self.inputs = {
            'Input': np.random.random((20, 30)).astype(self.dtype),
            'X': np.random.random((20, 6)).astype(self.dtype),
            'Y': np.random.random((6, 30)).astype(self.dtype),
        }
        self.attrs = {
            'Alpha': 0.1,
            'Beta': 1.0,
        }
202 203 204 205
        self.outputs = {
            'Out': self.attrs['Beta'] * self.inputs['Input']
            + self.attrs['Alpha'] * np.dot(self.inputs['X'], self.inputs['Y'])
        }
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222


class TestAddMMOp3(OpTest):
    # test broadcast
    def setUp(self):
        self.op_type = "addmm"
        self.dtype = np.float64
        self.init_dtype_type()
        self.inputs = {
            'Input': np.random.random((1, 100)).astype(self.dtype),
            'X': np.random.random((20, 10)).astype(self.dtype),
            'Y': np.random.random((10, 100)).astype(self.dtype),
        }
        self.attrs = {
            'Alpha': 0.5,
            'Beta': 2.0,
        }
223 224 225 226
        self.outputs = {
            'Out': self.attrs['Beta'] * self.inputs['Input']
            + self.attrs['Alpha'] * np.dot(self.inputs['X'], self.inputs['Y'])
        }
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    def init_dtype_type(self):
        pass

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input', 'X', 'Y'], 'Out')

    def test_check_grad_x(self):
        self.check_grad(['X'], 'Out', no_grad_set=None)

    def test_check_grad_y(self):
        self.check_grad(['Y'], 'Out', no_grad_set=None)

    def test_check_grad_input(self):
        self.check_grad(['Input'], 'Out', no_grad_set=None)


247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
class TestAddMMOp4(OpTest):
    # test broadcast
    def setUp(self):
        self.op_type = "addmm"
        self.dtype = np.float64
        self.init_dtype_type()
        self.inputs = {
            'Input': np.random.random((100)).astype(self.dtype),
            'X': np.random.random((20, 10)).astype(self.dtype),
            'Y': np.random.random((10, 100)).astype(self.dtype),
        }
        self.attrs = {
            'Alpha': 0.5,
            'Beta': 2.0,
        }
262 263 264 265
        self.outputs = {
            'Out': self.attrs['Beta'] * self.inputs['Input']
            + self.attrs['Alpha'] * np.dot(self.inputs['X'], self.inputs['Y'])
        }
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    def init_dtype_type(self):
        pass

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input', 'X', 'Y'], 'Out')

    def test_check_grad_x(self):
        self.check_grad(['X'], 'Out', no_grad_set=None)

    def test_check_grad_y(self):
        self.check_grad(['Y'], 'Out', no_grad_set=None)

    def test_check_grad_input(self):
        self.check_grad(['Input'], 'Out', no_grad_set=None)


class TestAddMMOp5(unittest.TestCase):
287 288 289 290 291 292 293 294 295 296 297 298 299
    def test_api_with_dygraph(self):
        np_input = np.random.random((20, 30)).astype(np.float32)
        np_x = np.random.random((20, 6)).astype(np.float32)
        np_y = np.random.random((6, 30)).astype(np.float32)

        with fluid.dygraph.guard():
            input = fluid.dygraph.to_variable(np_input)
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            out = paddle.tensor.addmm(input, x, y)
            assert np.allclose(np_input + np.dot(np_x, np_y), out.numpy())


Y
yaoxuefeng 已提交
300 301 302 303 304 305
class TestAddMMAPI(unittest.TestCase):
    def test_api_error(self):
        data_x = np.ones((2, 2)).astype(np.float32)
        data_y = np.ones((2, 2)).astype(np.float32)
        data_input = np.ones((2, 2)).astype(np.float32)

306
        paddle.disable_static()
Y
yaoxuefeng 已提交
307 308 309

        def test_error1():
            data_x_wrong = np.ones((2, 3)).astype(np.float32)
Z
Zhou Wei 已提交
310 311 312
            x = paddle.to_tensor(data_x_wrong)
            y = paddle.to_tensor(data_y)
            input = paddle.to_tensor(data_input)
313 314 315
            out = paddle.tensor.addmm(
                input=input, x=x, y=y, beta=0.5, alpha=5.0
            )
316

Y
yaoxuefeng 已提交
317
        self.assertRaises(ValueError, test_error1)
318 319 320 321 322 323

        def test_error2():
            data_x_wrong = np.ones((2)).astype(np.float32)
            x = paddle.to_tensor(data_x_wrong)
            y = paddle.to_tensor(data_y)
            input = paddle.to_tensor(data_input)
324 325 326
            out = paddle.tensor.addmm(
                input=input, x=x, y=y, beta=0.5, alpha=5.0
            )
327 328 329 330 331 332 333 334

        self.assertRaises(ValueError, test_error2)

        def test_error3():
            data_input_wrong = np.ones((2, 2, 2)).astype(np.float32)
            x = paddle.to_tensor(data_x)
            y = paddle.to_tensor(data_y)
            input = paddle.to_tensor(data_input_wrong)
335 336 337
            out = paddle.tensor.addmm(
                input=input, x=x, y=y, beta=0.5, alpha=5.0
            )
338 339 340 341 342 343 344 345

        self.assertRaises(ValueError, test_error3)

        def test_error4():
            data_input_wrong = np.ones((5)).astype(np.float32)
            x = paddle.to_tensor(data_x)
            y = paddle.to_tensor(data_y)
            input = paddle.to_tensor(data_input_wrong)
346 347 348
            out = paddle.tensor.addmm(
                input=input, x=x, y=y, beta=0.5, alpha=5.0
            )
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

        self.assertRaises(ValueError, test_error4)

        paddle.enable_static()

    def test_api_normal_1(self):
        data_x = np.ones((2, 2)).astype(np.float32)
        data_y = np.ones((2, 2)).astype(np.float32)
        data_input = np.ones((2, 2)).astype(np.float32)
        data_alpha = 0.1
        data_beta = 1.0

        paddle.disable_static()

        x = paddle.to_tensor(data_x)
        y = paddle.to_tensor(data_y)
        input = paddle.to_tensor(data_input)
366 367 368
        paddle_output = paddle.tensor.addmm(
            input=input, x=x, y=y, beta=data_beta, alpha=data_alpha
        )
369
        numpy_output = data_beta * data_input + data_alpha * np.dot(
370 371
            data_x, data_y
        )
372

373 374 375
        np.testing.assert_allclose(
            numpy_output, paddle_output.numpy(), rtol=1e-05
        )
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

        paddle.enable_static()

    def test_api_normal_2(self):
        data_x = np.ones((3, 10)).astype(np.float32)
        data_y = np.ones((10, 3)).astype(np.float32)
        data_input = np.ones((3)).astype(np.float32)
        data_alpha = 0.1
        data_beta = 1.0

        paddle.disable_static()

        x = paddle.to_tensor(data_x)
        y = paddle.to_tensor(data_y)
        input = paddle.to_tensor(data_input)
391 392 393
        paddle_output = paddle.tensor.addmm(
            input=input, x=x, y=y, beta=data_beta, alpha=data_alpha
        )
394
        numpy_output = data_beta * data_input + data_alpha * np.dot(
395 396
            data_x, data_y
        )
397

398 399 400
        np.testing.assert_allclose(
            numpy_output, paddle_output.numpy(), rtol=1e-05
        )
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

        paddle.enable_static()

    def test_api_normal_3(self):
        data_x = np.ones((3, 10)).astype(np.float32)
        data_y = np.ones((10, 3)).astype(np.float32)
        data_input = np.ones((1)).astype(np.float32)
        data_alpha = 0.1
        data_beta = 1.0

        paddle.disable_static()

        x = paddle.to_tensor(data_x)
        y = paddle.to_tensor(data_y)
        input = paddle.to_tensor(data_input)
416 417 418
        paddle_output = paddle.tensor.addmm(
            input=input, x=x, y=y, beta=data_beta, alpha=data_alpha
        )
419
        numpy_output = data_beta * data_input + data_alpha * np.dot(
420 421
            data_x, data_y
        )
422

423 424 425
        np.testing.assert_allclose(
            numpy_output, paddle_output.numpy(), rtol=1e-05
        )
426 427 428

        paddle.enable_static()

Y
yaoxuefeng 已提交
429

430
if __name__ == "__main__":
H
hong 已提交
431
    paddle.enable_static()
432
    unittest.main()