test_addmm_op.py 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


class TestAddMMOp(OpTest):
    # test basic
    def setUp(self):
        self.op_type = "addmm"
        self.dtype = np.float64
        self.init_dtype_type()
        self.inputs = {
            'Input': np.random.random((100, 1)).astype(self.dtype),
            'X': np.random.random((100, 10)).astype(self.dtype),
            'Y': np.random.random((10, 20)).astype(self.dtype),
        }
        self.outputs = {
            'Out':
            self.inputs['Input'] + np.dot(self.inputs['X'], self.inputs['Y'])
        }

    def init_dtype_type(self):
        pass

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input', 'X', 'Y'], 'Out')

    def test_check_grad_x(self):
        self.check_grad(['X'], 'Out', no_grad_set=None)

    def test_check_grad_y(self):
        self.check_grad(['Y'], 'Out', no_grad_set=None)

    def test_check_grad_input(self):
        self.check_grad(['Input'], 'Out', no_grad_set=None)


class TestAddMMOpError(unittest.TestCase):
    # test error
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of addmm_op must be Variable.
Y
yaoxuefeng 已提交
66

67
            input = fluid.create_lod_tensor(
Y
yaoxuefeng 已提交
68
                np.array([[-1, -1], [-1, -1]]), [[2]], fluid.CPUPlace())
69
            x1 = fluid.create_lod_tensor(
Y
yaoxuefeng 已提交
70
                np.array([[-1, -1], [-1, -1]]), [[2]], fluid.CPUPlace())
71
            x2 = fluid.create_lod_tensor(
Y
yaoxuefeng 已提交
72
                np.array([[-1, -1], [-1, -1]]), [[2]], fluid.CPUPlace())
73
            self.assertRaises(TypeError, paddle.addmm, input, x1, x2)
Y
yaoxuefeng 已提交
74

75
            # The input dtype of mul_op must be float32 or float64.
Y
yaoxuefeng 已提交
76 77 78 79 80 81 82 83 84
            input = fluid.layers.data(
                name='input',
                shape=[4, 4],
                dtype="int32",
                append_batch_size=False)
            x3 = fluid.layers.data(
                name='x3', shape=[4, 4], dtype="int32", append_batch_size=False)
            x4 = fluid.layers.data(
                name='x4', shape=[4, 4], dtype="int32", append_batch_size=False)
85
            self.assertRaises(TypeError, paddle.addmm, input, x3, x4)
Y
yaoxuefeng 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
            # x and y dimension mismatch
            x5 = fluid.layers.data(
                name='x5',
                shape=[4, 5],
                dtype="float32",
                append_batch_size=False)
            x6 = fluid.layers.data(
                name='x6',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False)
            self.assertRaises(ValueError, paddle.addmm, input, x5, x6)
            # input and x are not broadcastable
            x7 = fluid.layers.data(
                name='x7',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False)
            x8 = fluid.layers.data(
                name='x8',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False)
            input1 = fluid.layers.data(
                name='input1',
                shape=[2, 4],
                dtype="float32",
                append_batch_size=False)
            self.assertRaises(ValueError, paddle.addmm, input1, x7, x8)
            # input and x are not broadcastable
            x9 = fluid.layers.data(
                name='x9',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False)
            x10 = fluid.layers.data(
                name='x10',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False)
            input2 = fluid.layers.data(
                name='input2',
                shape=[1, 2],
                dtype="float32",
                append_batch_size=False)
            self.assertRaises(ValueError, paddle.addmm, input2, x9, x10)
            x11 = fluid.layers.data(
                name='x11',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False)
            x12 = fluid.layers.data(
                name='x12',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False)
            input3 = fluid.layers.data(
                name='input3',
                shape=[4, 2],
                dtype="float32",
                append_batch_size=False)
            self.assertRaises(ValueError, paddle.addmm, input3, x11, x12)
            x13 = fluid.layers.data(
                name='x13',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False)
            x14 = fluid.layers.data(
                name='x14',
                shape=[4, 4],
                dtype="float32",
                append_batch_size=False)
            input4 = fluid.layers.data(
                name='input4',
                shape=[3, 1],
                dtype="float32",
                append_batch_size=False)
            self.assertRaises(ValueError, paddle.addmm, input4, x13, x14)
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221


class TestAddMMOp2(TestAddMMOp):
    # test alpha and beta
    def setUp(self):
        self.op_type = "addmm"
        self.dtype = np.float64
        self.init_dtype_type()
        self.inputs = {
            'Input': np.random.random((20, 30)).astype(self.dtype),
            'X': np.random.random((20, 6)).astype(self.dtype),
            'Y': np.random.random((6, 30)).astype(self.dtype),
        }
        self.attrs = {
            'Alpha': 0.1,
            'Beta': 1.0,
        }
        self.outputs = {'Out': self.attrs['Beta'] * self.inputs['Input'] + \
                        self.attrs['Alpha'] * np.dot(self.inputs['X'], self.inputs['Y'])}


class TestAddMMOp3(OpTest):
    # test broadcast
    def setUp(self):
        self.op_type = "addmm"
        self.dtype = np.float64
        self.init_dtype_type()
        self.inputs = {
            'Input': np.random.random((1, 100)).astype(self.dtype),
            'X': np.random.random((20, 10)).astype(self.dtype),
            'Y': np.random.random((10, 100)).astype(self.dtype),
        }
        self.attrs = {
            'Alpha': 0.5,
            'Beta': 2.0,
        }
        self.outputs = {'Out': self.attrs['Beta'] * self.inputs['Input'] + \
                        self.attrs['Alpha'] * np.dot(self.inputs['X'], self.inputs['Y'])}

    def init_dtype_type(self):
        pass

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input', 'X', 'Y'], 'Out')

    def test_check_grad_x(self):
        self.check_grad(['X'], 'Out', no_grad_set=None)

    def test_check_grad_y(self):
        self.check_grad(['Y'], 'Out', no_grad_set=None)

    def test_check_grad_input(self):
        self.check_grad(['Input'], 'Out', no_grad_set=None)


222 223 224 225 226 227 228 229 230 231 232 233 234 235
class TestAddMMOp4(unittest.TestCase):
    def test_api_with_dygraph(self):
        np_input = np.random.random((20, 30)).astype(np.float32)
        np_x = np.random.random((20, 6)).astype(np.float32)
        np_y = np.random.random((6, 30)).astype(np.float32)

        with fluid.dygraph.guard():
            input = fluid.dygraph.to_variable(np_input)
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            out = paddle.tensor.addmm(input, x, y)
            assert np.allclose(np_input + np.dot(np_x, np_y), out.numpy())


Y
yaoxuefeng 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
'''
class TestAddMMAPI(unittest.TestCase):
    def test_api_error(self):
        data_x = np.ones((2, 2)).astype(np.float32)
        data_y = np.ones((2, 2)).astype(np.float32)
        data_input = np.ones((2, 2)).astype(np.float32)

        paddle.enable_imperative()

        def test_error1():
            data_x_wrong = np.ones((2, 3)).astype(np.float32)
            x = paddle.imperative.to_variable(data_x_wrong)
            y = paddle.imperative.to_variable(data_y)
            input = paddle.imperative.to_variable(data_input)
            out = paddle.tensor.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
        self.assertRaises(ValueError, test_error1)
'''

254 255
if __name__ == "__main__":
    unittest.main()