test_fused_attention_op.py 12.2 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import paddle
import paddle.nn as nn
import paddle.fluid.core as core
import paddle.nn.functional as F
21
import paddle.incubate.nn.functional as incubate_f
L
Li Min 已提交
22 23 24 25 26 27 28
from paddle.nn.layer.norm import LayerNorm
from paddle.nn.layer.common import Linear, Dropout
from paddle.nn.layer.transformer import _convert_attention_mask
from paddle import tensor
from paddle.fluid import layers
import unittest
from op_test import OpTest
29 30 31
from paddle.fluid.framework import default_main_program

default_main_program().random_seed = 42
L
Li Min 已提交
32 33 34 35 36 37 38 39


class TestFusedAttentionOp(OpTest):
    def setUp(self):
        self.config()
        self.generate_input_data()
        paddle.set_default_dtype(self.x_type)
        self.__class__.op_type = "fused_attention"
40 41
        # use autograd to check grad in this unittest.
        self.__class__.no_need_check_grad = True
L
Li Min 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
        self.q_proj = Linear(
            self.embed_dim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.k_proj = Linear(
            self.kdim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.v_proj = Linear(
            self.vdim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.out_proj = Linear(
            self.embed_dim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        paddle.set_default_dtype(np.float32)
        self.norm1 = LayerNorm(self.embed_dim)
        self.norm2 = LayerNorm(self.embed_dim)
        paddle.set_default_dtype(self.x_type)
        self.dropout = Dropout(self.dropout_prob, mode="upscale_in_train")

    def config(self):
        self.x_type = np.float32
        self.attn_mask_type = np.float64
71
        self.pre_layer_norm = False
72
        self.has_attn_mask = True
L
Li Min 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        self.training = True

        self.batch_size = 8
        self.query_length = 128
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = None
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def generate_input_data(self):
        self.query = np.random.rand(self.batch_size, self.query_length,
                                    self.embed_dim).astype(self.x_type)
91 92 93 94 95 96 97 98 99 100 101 102
        if self.has_attn_mask:
            self.attn_mask = np.ones(
                (self.batch_size, self.num_heads, self.query_length,
                 self.key_length),
                dtype=self.attn_mask_type)
            if self.attn_mask_type == np.int64:
                self.attn_mask = np.tril(self.attn_mask)
            elif self.attn_mask_type == np.float64:
                self.attn_mask = (np.tril(self.attn_mask) - 1.0) * 1e9
            else:
                raise ValueError(
                    "'attn_mask_type' should be 'int64' or 'float64'.")
L
Li Min 已提交
103
        else:
104
            self.attn_mask = None
L
Li Min 已提交
105 106 107 108 109 110 111 112
        self.key, self.value = self.query, self.query

        self.dout = np.random.random((self.batch_size, self.query_length,
                                      self.embed_dim)).astype(self.x_type)

    def GetBaselineOut(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        tensor_query = paddle.to_tensor(self.query, stop_gradient=False)
113 114 115 116
        if self.has_attn_mask:
            attn_mask = paddle.to_tensor(self.attn_mask, stop_gradient=False)
        else:
            attn_mask = None
L
Li Min 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        residual = tensor_query

        ln1_out = tensor_query
        if self.pre_layer_norm:
            ln1_out = self.norm1(tensor_query)

        q = self.q_proj(ln1_out)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q_out = tensor.transpose(x=q, perm=[0, 2, 1, 3])
        k = self.k_proj(ln1_out)
        v = self.v_proj(ln1_out)
        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k_out = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v_out = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        qk_out = layers.matmul(
            x=q_out, y=k_out, transpose_y=True, alpha=self.head_dim**-0.5)

        if attn_mask is not None:
            attn_mask = _convert_attention_mask(attn_mask, qk_out.dtype)
            attn_mask_out = qk_out + attn_mask
            softmax_out = F.softmax(attn_mask_out)
        else:
            softmax_out = F.softmax(qk_out)

        if self.dropout_prob:
            dropout_out = F.dropout(
                softmax_out,
                self.dropout_prob,
                training=self.training,
                mode="upscale_in_train")
            qktv_out = tensor.matmul(dropout_out, v_out)
        else:
            qktv_out = tensor.matmul(softmax_out, v_out)

        fmha_out = tensor.transpose(qktv_out, perm=[0, 2, 1, 3])
        out_linear_in = tensor.reshape(
            x=fmha_out, shape=[0, 0, fmha_out.shape[2] * fmha_out.shape[3]])
        out = self.out_proj(out_linear_in)

        residual_out = residual + self.dropout(out)
        if not self.pre_layer_norm:
            final_out = self.norm1(residual_out)
L
Li Min 已提交
161 162
        else:
            final_out = residual_out
163 164 165
        paddle.autograd.backward(
            [final_out], [paddle.to_tensor(self.dout)], retain_graph=True)
        return final_out, tensor_query.grad
L
Li Min 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

    def GetFusedAttentionOut(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        q_proj_weight = paddle.to_tensor(
            self.q_proj.weight, stop_gradient=False)
        q_proj_bias = paddle.to_tensor(self.q_proj.bias, stop_gradient=False)
        k_proj_weight = paddle.to_tensor(
            self.k_proj.weight, stop_gradient=False)
        k_proj_bias = paddle.to_tensor(self.k_proj.bias, stop_gradient=False)
        v_proj_weight = paddle.to_tensor(
            self.v_proj.weight, stop_gradient=False)
        v_proj_bias = paddle.to_tensor(self.v_proj.bias, stop_gradient=False)
        out_linear_weight = paddle.to_tensor(
            self.out_proj.weight, stop_gradient=False)
        out_linear_bias = paddle.to_tensor(
            self.out_proj.bias, stop_gradient=False)

        ln1_scale = paddle.to_tensor(self.norm1.weight, stop_gradient=False)
        ln1_bias = paddle.to_tensor(self.norm1.bias, stop_gradient=False)
        ln2_scale = paddle.to_tensor(self.norm2.weight, stop_gradient=False)
        ln2_bias = paddle.to_tensor(self.norm2.bias, stop_gradient=False)

        q_proj_weight = q_proj_weight.numpy().transpose((1, 0))
        k_proj_weight = k_proj_weight.numpy().transpose((1, 0))
        v_proj_weight = v_proj_weight.numpy().transpose((1, 0))
        qkv_weight = np.concatenate(
            (q_proj_weight, k_proj_weight, v_proj_weight))
        qkv_weight = qkv_weight.reshape(
            (3, self.num_heads, self.head_dim, self.embed_dim))

        qkv_bias = np.concatenate(
            (q_proj_bias.numpy(), k_proj_bias.numpy(), v_proj_bias.numpy()))
        qkv_bias = qkv_bias.reshape((3, self.num_heads, self.head_dim))

        x = paddle.to_tensor(self.query, stop_gradient=False)
201 202 203 204
        if self.has_attn_mask:
            attn_mask = paddle.to_tensor(self.attn_mask, stop_gradient=False)
        else:
            attn_mask = None
L
Li Min 已提交
205 206 207 208 209 210 211
        qkv_weight_tensor = paddle.to_tensor(qkv_weight, stop_gradient=False)
        qkv_bias_tensor = paddle.to_tensor(qkv_bias, stop_gradient=False)
        epsilon = 1e-05
        ln2_epsilon = 1e-05

        if attn_mask is not None:
            attn_mask = _convert_attention_mask(attn_mask, x.dtype)
212
        final_out = incubate_f.fused_multi_head_attention(
L
Li Min 已提交
213 214 215 216
            x, qkv_weight_tensor, out_linear_weight, self.pre_layer_norm,
            ln1_scale, ln1_bias, ln2_scale, ln2_bias, epsilon, qkv_bias_tensor,
            out_linear_bias, attn_mask, self.dropout_prob,
            self.attn_dropout_prob, ln2_epsilon)
217 218 219
        paddle.autograd.backward(
            [final_out], [paddle.to_tensor(self.dout)], retain_graph=True)
        return final_out, x.grad
L
Li Min 已提交
220 221

    def test_fused_attention_op(self):
222 223
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
L
Li Min 已提交
224
        np.testing.assert_allclose(
L
Li Min 已提交
225
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-4)
226
        np.testing.assert_allclose(
L
Li Min 已提交
227
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-4)
L
Li Min 已提交
228 229


230 231 232 233 234
class TestFusedAttentionOpPreLn(TestFusedAttentionOp):
    def config(self):
        self.x_type = np.float32
        self.attn_mask_type = np.float64
        self.pre_layer_norm = True
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        self.has_attn_mask = True
        self.training = True

        self.batch_size = 8
        self.query_length = 128
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = None
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def test_fused_attention_op(self):
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
        np.testing.assert_allclose(
L
Li Min 已提交
255
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-4)
256
        np.testing.assert_allclose(
L
Li Min 已提交
257
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-4)
258 259 260 261 262 263 264 265


class TestFusedAttentionOpNoneAttnMask(TestFusedAttentionOp):
    def config(self):
        self.x_type = np.float32
        self.attn_mask_type = np.float64
        self.pre_layer_norm = True
        self.has_attn_mask = False
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        self.training = True

        self.batch_size = 8
        self.query_length = 128
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = None
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def test_fused_attention_op(self):
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
        np.testing.assert_allclose(
L
Li Min 已提交
285
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-4)
286
        np.testing.assert_allclose(
L
Li Min 已提交
287
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-4)
288 289


L
Li Min 已提交
290 291 292 293
class TestFusedAttentionOpFp16(TestFusedAttentionOp):
    def config(self):
        self.x_type = np.float16
        self.attn_mask_type = np.float64
294
        self.pre_layer_norm = False
295
        self.has_attn_mask = True
L
Li Min 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        self.training = True

        self.batch_size = 8
        self.query_length = 128
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = None
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def test_fused_attention_op(self):
312 313
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
L
Li Min 已提交
314 315
        np.testing.assert_allclose(
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-1)
316 317
        np.testing.assert_allclose(
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-1)
L
Li Min 已提交
318 319 320 321


if __name__ == "__main__":
    unittest.main()