test_cross_entropy_loss.py 70.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
21 22
from test_softmax_op import stable_softmax
from test_softmax_with_cross_entropy_op import cross_entropy
R
root 已提交
23
from paddle.fluid import Program, program_guard
24
from paddle.fluid.framework import _test_eager_guard
25 26


27
def log_softmax(x, axis=-1):
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    softmax_out = np.apply_along_axis(stable_softmax, axis, x)
    return np.log(softmax_out)


def cross_entropy_loss_1d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
    C = input_shape[1]
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
43 44
    ###1. compute softmax cross_entropy (with weight)
    ###   Note: only support hard labels.
45 46 47 48 49 50 51 52
    for i in range(N):
        cur_target = label[i]
        if cur_target == ignore_index:
            out[i] = 0
            continue
        cur_weight = weight[cur_target] if weight is not None else 1
        total_weight += cur_weight
        out[i] = -log_softmax_out[i][cur_target] * cur_weight
53

H
HydrogenSulfate 已提交
54
    ###2. deal with reduction
55 56 57
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
58 59
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
60 61 62 63 64 65 66 67 68 69 70 71
    elif reduction == 'none':
        return out


def cross_entropy_loss_2d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
72 73 74
    H = input_shape[1]
    W = input_shape[2]

75 76 77 78 79 80 81 82 83 84 85
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
    for i in range(N):
        for h in range(H):
            for w in range(W):
                cur_target = label[i][h][w]
                if cur_target == ignore_index:
                    out[i][h][w] = 0
                    continue
                cur_weight = weight[cur_target] if weight is not None else 1
                total_weight += cur_weight
86 87
                out[i][h][
                    w] = -log_softmax_out[i][h][w][cur_target] * cur_weight
88 89 90
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
91 92
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
93 94 95 96
    elif reduction == 'none':
        return out


97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
def cross_entropy_soft(softmax,
                       label,
                       axis,
                       N,
                       weight=None,
                       reduction='mean',
                       ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            cur_soft_label = label[i]
            cur_weight = np.dot(weight, cur_soft_label)
            total_weight += cur_weight
            weighted_loss[i] = loss[i] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


def cross_entropy_soft_2d(softmax,
                          label,
                          axis,
                          N,
                          H,
                          W,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            for h in range(H):
                for w in range(W):
                    cur_soft_label = label[i][h][w]
                    cur_weight = np.dot(weight, cur_soft_label)
                    total_weight += cur_weight
                    weighted_loss[i][h][w] = loss[i][h][w] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


189
class CrossEntropyLoss(unittest.TestCase):
190

R
ronnywang 已提交
191 192 193
    def setUp(self):
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
194 195 196 197 198

    ###test for deprecated softmax_with_cross_entropy
    def test_softmax_with_cross_entropy(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
199 200
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

217 218 219 220 221 222 223
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

        paddle.set_device("cpu")

        paddle.disable_static()
        paddle_loss_swce = paddle.nn.functional.softmax_with_cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis)

        paddle_loss_ce = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)

243 244 245 246
        np.testing.assert_allclose(paddle_loss_swce.numpy(),
                                   expected,
                                   rtol=1e-05)
        np.testing.assert_allclose(paddle_loss_ce.numpy(), expected, rtol=1e-05)
247 248 249 250 251 252

    ###soft_label test start
    ###soft_label test 1
    def test_cross_entropy_loss_soft_1d(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
253 254
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

271 272 273 274 275 276 277
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
297 298
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
299
        with fluid.program_guard(prog, startup_prog):
300 301 302 303 304 305
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

321 322
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
323 324 325 326 327

    ###soft_label test 2
    def test_cross_entropy_loss_soft_1d_weight(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
328 329
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        if self.soft_label:
            self.labels = np.random.uniform(0.1, 1.0,
                                            self.shape).astype(self.dtype)
            self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)
        else:
            axis_dim = self.shape[self.axis]
            self.shape[self.axis] = 1
350 351 352 353
            self.labels = np.random.randint(0,
                                            axis_dim,
                                            self.shape,
                                            dtype="int64")
354 355

        #1. numpy
356 357 358 359 360 361 362
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        # 3.static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
381 382
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
383
        with fluid.program_guard(prog, startup_prog):
384 385 386 387 388 389
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
R
ronnywang 已提交
390
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

407 408
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
409 410 411 412 413

    ###soft_label test 3
    def test_cross_entropy_loss_soft_1d_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
414 415
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
433 434 435 436 437 438 439
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
440 441 442

        paddle.set_device("cpu")

H
HydrogenSulfate 已提交
443
        #2 dygraph
444 445 446 447 448 449 450 451 452 453 454 455 456 457
        paddle.disable_static()
        paddle_loss_mean = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=self.weight,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_mean.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
458 459
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
460
        with fluid.program_guard(prog, startup_prog):
461 462 463 464 465 466
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
467 468 469 470 471 472

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
473 474 475 476 477 478
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels
                                 },
                                 fetch_list=[ret])
479 480 481
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

482 483
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
484 485 486 487 488

    ###soft_label test 4
    def test_cross_entropy_loss_soft_1d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
489 490
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
508 509 510 511 512 513 514
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
533 534
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
535
        with fluid.program_guard(prog, startup_prog):
536 537 538 539 540 541
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
R
ronnywang 已提交
542
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

558 559
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
560 561 562 563 564

    ###soft_label test 5
    def test_cross_entropy_loss_soft_2d(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
565 566
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 3
        self.H = 2
        self.W = 2
        self.C = 5
        self.shape = [self.N, self.H, self.W, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
586 587 588 589 590 591 592 593 594
        expected = cross_entropy_soft_2d(softmax,
                                         self.labels,
                                         self.axis,
                                         self.N,
                                         self.H,
                                         self.W,
                                         weight=self.weight,
                                         reduction=self.reduction,
                                         ignore_index=self.ignore_index)
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
614 615
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
616
        with fluid.program_guard(prog, startup_prog):
617 618 619 620 621 622
            input = fluid.data(name='input',
                               shape=[self.N, self.H, self.W, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.H, self.W, self.C],
                               dtype=self.dtype)
623 624 625 626 627 628 629 630 631 632 633 634 635 636

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

637 638 639
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
640 641 642 643 644

    ###soft_label test 6
    def test_cross_entropy_loss_soft_2d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
645 646
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 3
        self.H = 2
        self.W = 2
        self.C = 5
        self.shape = [self.N, self.H, self.W, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
666 667 668 669 670 671 672 673 674
        expected = cross_entropy_soft_2d(softmax,
                                         self.labels,
                                         self.axis,
                                         self.N,
                                         self.H,
                                         self.W,
                                         weight=self.weight,
                                         reduction=self.reduction,
                                         ignore_index=self.ignore_index)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
693 694
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
695
        with fluid.program_guard(prog, startup_prog):
696 697 698 699 700 701
            input = fluid.data(name='input',
                               shape=[self.N, self.H, self.W, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.H, self.W, self.C],
                               dtype=self.dtype)
R
ronnywang 已提交
702
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

718 719 720
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
721 722 723

    ###soft_label test end

724
    def test_cross_entropy_loss_1d_with_mean_ignore(self):
R
ronnywang 已提交
725
        input_np = np.random.random([2, 4]).astype(self.dtype)
726 727 728 729
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
730 731
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
732
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
733
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
            label = fluid.data(name='label', shape=[2], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(ignore_index=0)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]

        with fluid.dygraph.guard():
749 750 751 752
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(axis=1,
                                                                 ignore_index=0)
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
753 754 755
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=0)[0]
756 757 758
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
759

760 761 762 763 764 765 766 767
    def test_cross_entropy_loss_1d_with_mean_ignore_negative(self):
        N = 100
        C = 200
        input_np = np.random.random([N, C]).astype(self.dtype)
        label_np = -np.ones((N)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
768 769
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
            label = fluid.data(name='label', shape=[N], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                ignore_index=-1)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                axis=1, ignore_index=-1)
788 789
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
790 791 792 793
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=-1)[0]

794 795 796
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
797

798
    def test_cross_entropy_loss_1d_with_weight_mean_ignore(self):
799 800
        N = 100
        C = 200
R
ronnywang 已提交
801
        input_np = np.random.random([N, C]).astype(self.dtype)
802
        label_np = np.random.randint(0, C, size=(N)).astype(np.int64)
R
ronnywang 已提交
803
        weight_np = np.random.random([C]).astype(self.dtype)
804 805 806
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
807 808
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
809
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
810
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
811
            label = fluid.data(name='label', shape=[N], dtype='int64')
812 813 814 815
            weight = fluid.data(name='weight', shape=[C],
                                dtype=self.dtype)  #weight for each class
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight,
                                                                 ignore_index=0)
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np),
                axis=1,
                ignore_index=0)
833 834
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
835 836
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
837 838 839 840
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         ignore_index=0)[0]
841

842 843 844
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
845

H
HydrogenSulfate 已提交
846 847 848 849 850 851 852 853 854 855
    def test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel(self):
        N = 100
        C = 200
        input_np = np.random.random([N, C]).astype(self.dtype)
        label_np = np.random.randint(0, C, size=(N)).astype(np.int64)
        label_np[0] = 255
        weight_np = np.random.random([C]).astype(self.dtype)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
856
                weight=fluid.dygraph.to_variable(weight_np), ignore_index=255)
857 858
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
H
HydrogenSulfate 已提交
859 860
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
861 862 863 864
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         ignore_index=255)[0]
H
HydrogenSulfate 已提交
865

866
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
H
HydrogenSulfate 已提交
867

868
    def test_cross_entropy_loss_1d_with_weight_mean(self):
R
ronnywang 已提交
869
        input_np = np.random.random([2, 4]).astype(self.dtype)
870
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
R
ronnywang 已提交
871
        weight_np = np.random.random([4]).astype(self.dtype)  #shape:C
872
        paddle.enable_static()
873 874
        prog = fluid.Program()
        startup_prog = fluid.Program()
875 876
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
877
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
878
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
879
            label = fluid.data(name='label', shape=[2], dtype='int64')
880 881
            weight = fluid.data(name='weight', shape=[4],
                                dtype=self.dtype)  #weight for each class
882 883 884 885 886 887 888 889 890 891 892 893
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
894 895
        expected = cross_entropy_loss_1d(input_np, label_np,
                                         weight=weight_np)[0]
896

897 898
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
899
                weight=fluid.dygraph.to_variable(weight_np), axis=1)
900 901
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
902 903
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
904 905
        expected = cross_entropy_loss_1d(input_np, label_np,
                                         weight=weight_np)[0]
906 907 908
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
909

910
    def test_cross_entropy_loss_1d_with_weight_sum(self):
R
ronnywang 已提交
911
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
912
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
R
ronnywang 已提交
913
        weight_np = np.random.random([200]).astype(self.dtype)  #C
914
        paddle.enable_static()
915 916
        prog = fluid.Program()
        startup_prog = fluid.Program()
917 918
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
919
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
920
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
921
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
922
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
939 940
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
941 942
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
943 944 945 946
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='sum')[0]
947 948 949
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
950

951
    def test_cross_entropy_loss_1d_with_weight_none(self):
R
ronnywang 已提交
952
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
953
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
R
ronnywang 已提交
954
        weight_np = np.random.random([200]).astype(self.dtype)  #C
955

956
        paddle.enable_static()
957 958
        prog = fluid.Program()
        startup_prog = fluid.Program()
959 960
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
961
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
962
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
963
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
964
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
965

966 967 968 969 970 971 972 973 974 975 976 977
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
978
            static_ret = np.squeeze(static_ret)
979 980 981 982
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
983 984
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
985
            dy_ret_value = dy_ret.numpy()
986
            dy_ret_value = np.squeeze(dy_ret_value)
987
            self.assertIsNotNone(dy_ret_value)
988 989 990 991
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='none')
992 993 994
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
995 996

    def test_cross_entropy_loss_1d_with_weight_none_func(self):
R
ronnywang 已提交
997
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
998
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N
R
ronnywang 已提交
999
        weight_np = np.random.random([200]).astype(self.dtype)  #C
1000 1001 1002
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
1003 1004
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1005
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1006
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1007
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
1008
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
1009 1010 1011 1012
            ret = paddle.nn.functional.cross_entropy(input,
                                                     label,
                                                     weight=weight,
                                                     reduction='none')
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            static_ret = np.squeeze(static_ret)
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            dy_ret = paddle.nn.functional.cross_entropy(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np),
                weight=fluid.dygraph.to_variable(weight_np),
                reduction='none')
            dy_ret_value = dy_ret.numpy()
            dy_ret_value = np.squeeze(dy_ret_value)
            self.assertIsNotNone(dy_ret_value)
1033 1034 1035 1036
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='none')
1037 1038 1039
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1040 1041

    def test_cross_entropy_loss_1d_mean(self):
R
ronnywang 已提交
1042
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1043 1044
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1045 1046
        prog = fluid.Program()
        startup_prog = fluid.Program()
1047 1048
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1049
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1050
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1051 1052 1053 1054 1055
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
1056 1057 1058 1059
                                 feed={
                                     'input': input_np,
                                     'label': label_np
                                 },
1060 1061 1062 1063
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
1064 1065
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1066 1067 1068
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]
1069 1070 1071
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1072 1073

    def test_cross_entropy_loss_1d_sum(self):
R
ronnywang 已提交
1074
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1075 1076
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1077 1078
        prog = fluid.Program()
        startup_prog = fluid.Program()
1079 1080
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1081
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1082
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1083 1084 1085 1086 1087 1088
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
1089 1090 1091 1092
                                 feed={
                                     'input': input_np,
                                     'label': label_np
                                 },
1093 1094 1095 1096 1097
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
1098 1099
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1100 1101 1102
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='sum')[0]
1103 1104 1105
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1106 1107

    def test_cross_entropy_loss_1d_none(self):
R
ronnywang 已提交
1108
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1109 1110
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1111 1112
        prog = fluid.Program()
        startup_prog = fluid.Program()
1113 1114
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1115
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1116
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1117 1118 1119 1120 1121 1122
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
1123 1124 1125 1126
                                 feed={
                                     'input': input_np,
                                     'label': label_np
                                 },
1127
                                 fetch_list=[ret])
1128
            static_ret = np.squeeze(static_ret)
1129 1130 1131 1132
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
1133 1134
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1135
            dy_ret_value = dy_ret.numpy()
1136
            dy_ret_value = np.squeeze(dy_ret_value)
1137 1138
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='none')
1139 1140 1141
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1142 1143

    def test_cross_entropy_loss_2d_with_weight_none(self):
R
ronnywang 已提交
1144
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1145 1146
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW1
R
ronnywang 已提交
1147
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1148 1149

        paddle.enable_static()
1150 1151
        prog = fluid.Program()
        startup_prog = fluid.Program()
1152 1153
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1154
        with fluid.program_guard(prog, startup_prog):
1155 1156 1157
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1158
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1159
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
1172
            static_ret = np.squeeze(static_ret)
1173 1174 1175 1176
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
1177 1178
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1179
            dy_ret_value = dy_ret.numpy()
1180
            dy_ret_value = np.squeeze(dy_ret_value)
1181
            self.assertIsNotNone(dy_ret_value)
1182 1183 1184 1185
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='none')
1186 1187 1188
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1189 1190 1191

    def test_cross_entropy_loss_2d_with_weight_axis_change_mean(self):
        input_np = np.random.random(size=(2, 3, 2, 2)).astype(self.dtype)  #NCHW
1192 1193
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1194 1195 1196 1197 1198
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C

        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
1199 1200
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1201
        with fluid.program_guard(prog, startup_prog):
1202 1203 1204
            input = fluid.data(name='input',
                               shape=[2, 3, 2, 2],
                               dtype=self.dtype)
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='mean', axis=1)
            # specify the class channels to axis 1
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])

            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
1224 1225 1226
                weight=fluid.dygraph.to_variable(weight_np),
                reduction='mean',
                axis=1)
1227 1228
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1229 1230
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1231 1232 1233 1234
        expected = cross_entropy_loss_2d(np.transpose(input_np, [0, 2, 3, 1]),
                                         label_np,
                                         weight=weight_np,
                                         reduction='mean')[0]
1235 1236 1237
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1238

H
HydrogenSulfate 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    def test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel(self):
        N = 4
        C = 3
        H = 512
        W = 512
        input_np = np.random.random([N, H, W, C]).astype(self.dtype)
        label_np = np.random.randint(0, C, size=(N, H, W)).astype(np.int64)
        label_np[0, 0, 0] = 255
        weight_np = np.random.random([C]).astype(self.dtype)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
1250
                weight=fluid.dygraph.to_variable(weight_np), ignore_index=255)
1251 1252
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
H
HydrogenSulfate 已提交
1253 1254
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1255 1256 1257 1258
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         ignore_index=255)[0]
1259
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
H
HydrogenSulfate 已提交
1260

1261
    def test_cross_entropy_loss_2d_with_weight_mean(self):
R
ronnywang 已提交
1262
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1263 1264
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
R
ronnywang 已提交
1265
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1266
        paddle.enable_static()
1267 1268
        prog = fluid.Program()
        startup_prog = fluid.Program()
1269 1270
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1271
        with fluid.program_guard(prog, startup_prog):
1272 1273 1274
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1275
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1276
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='mean')
1293 1294
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1295 1296
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1297 1298 1299 1300
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='mean')[0]
1301 1302 1303
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1304 1305

    def test_cross_entropy_loss_2d_with_weight_sum(self):
R
ronnywang 已提交
1306
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1307 1308
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
R
ronnywang 已提交
1309
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1310 1311
        paddle.enable_static()

1312 1313
        prog = fluid.Program()
        startup_prog = fluid.Program()
1314 1315
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1316
        with fluid.program_guard(prog, startup_prog):
1317 1318 1319
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1320
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1321
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
1338 1339
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1340 1341
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1342 1343 1344 1345
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='sum')[0]
1346 1347 1348
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1349 1350

    def test_cross_entropy_loss_2d_none(self):
R
ronnywang 已提交
1351
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1352 1353
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1354
        paddle.enable_static()
1355 1356
        prog = fluid.Program()
        startup_prog = fluid.Program()
1357 1358
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1359
        with fluid.program_guard(prog, startup_prog):
1360 1361 1362
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1363
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
1374
            static_ret = np.squeeze(static_ret)
1375 1376 1377 1378
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
1379 1380
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1381
            dy_ret_value = dy_ret.numpy()
1382
            dy_ret_value = np.squeeze(dy_ret_value)
1383 1384
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='none')
1385 1386 1387
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1388 1389

    def test_cross_entropy_loss_2d_mean(self):
R
ronnywang 已提交
1390
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1391 1392
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1393
        paddle.enable_static()
1394 1395
        prog = fluid.Program()
        startup_prog = fluid.Program()
1396 1397
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1398
        with fluid.program_guard(prog, startup_prog):
1399 1400 1401
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1402
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
1418 1419
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1420 1421
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1422 1423
        expected = cross_entropy_loss_2d(input_np, label_np,
                                         reduction='mean')[0]
1424 1425 1426
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1427 1428

    def test_cross_entropy_loss_2d_sum(self):
R
ronnywang 已提交
1429
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1430 1431
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1432
        paddle.enable_static()
1433 1434
        prog = fluid.Program()
        startup_prog = fluid.Program()
1435 1436
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1437
        with fluid.program_guard(prog, startup_prog):
1438 1439 1440
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1441
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
1457 1458
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1459 1460 1461
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='sum')[0]
1462 1463 1464
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1465

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    def test_soft_1d_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_cross_entropy_loss_soft_1d()
            self.test_cross_entropy_loss_soft_1d_weight()
            self.test_cross_entropy_loss_soft_1d_mean()
            self.test_cross_entropy_loss_soft_1d_weight_mean()

    # put all testcases in one test will be failed
    def test_soft_2d_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_cross_entropy_loss_soft_2d()
            self.test_cross_entropy_loss_soft_2d_weight_mean()

    def test_other_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_cross_entropy_loss_1d_with_mean_ignore()
            self.test_cross_entropy_loss_1d_with_mean_ignore_negative()
            self.test_cross_entropy_loss_1d_with_weight_mean_ignore()
            self.test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel(
            )
            self.test_cross_entropy_loss_1d_with_weight_mean()
            self.test_cross_entropy_loss_1d_with_weight_sum()
            self.test_cross_entropy_loss_1d_with_weight_none()
            self.test_cross_entropy_loss_1d_with_weight_none_func()
            self.test_cross_entropy_loss_1d_mean()
            self.test_cross_entropy_loss_1d_sum()
            self.test_cross_entropy_loss_1d_none()
            self.test_cross_entropy_loss_2d_with_weight_none()
            self.test_cross_entropy_loss_2d_with_weight_axis_change_mean()
            self.test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel(
            )
            self.test_cross_entropy_loss_2d_with_weight_mean()
            self.test_cross_entropy_loss_2d_with_weight_sum()
            self.test_cross_entropy_loss_2d_none()
            self.test_cross_entropy_loss_2d_mean()
            self.test_cross_entropy_loss_2d_sum()

1503

1504
class TestCrossEntropyFAPIError(unittest.TestCase):
1505

1506 1507 1508
    def test_errors(self):
        with program_guard(Program(), Program()):

H
HydrogenSulfate 已提交
1509
            def test_WeightLength_NotEqual():
1510
                input_data = paddle.rand(shape=[20, 100])
1511 1512 1513 1514
                label_data = paddle.randint(0,
                                            100,
                                            shape=[20, 1],
                                            dtype="int64")
H
HydrogenSulfate 已提交
1515
                weight_data = paddle.rand([100 + 1])
1516 1517 1518 1519
                paddle.nn.functional.cross_entropy(input=input_data,
                                                   label=label_data,
                                                   weight=weight_data,
                                                   ignore_index=-100)
H
HydrogenSulfate 已提交
1520

H
HydrogenSulfate 已提交
1521
            self.assertRaises(ValueError, test_WeightLength_NotEqual)
H
HydrogenSulfate 已提交
1522

H
HydrogenSulfate 已提交
1523 1524
            def test_LabelValue_ExceedMax():
                input_data = paddle.rand(shape=[20, 100])
1525 1526 1527 1528
                label_data = paddle.randint(0,
                                            100,
                                            shape=[20, 1],
                                            dtype="int64")
H
HydrogenSulfate 已提交
1529 1530
                label_data[0] = 100
                weight_data = paddle.rand([100])
1531 1532 1533 1534
                paddle.nn.functional.cross_entropy(input=input_data,
                                                   label=label_data,
                                                   weight=weight_data,
                                                   ignore_index=-100)
H
HydrogenSulfate 已提交
1535 1536 1537 1538 1539

            self.assertRaises(ValueError, test_LabelValue_ExceedMax)

            def test_LabelValue_ExceedMin():
                input_data = paddle.rand(shape=[20, 100])
1540 1541 1542 1543
                label_data = paddle.randint(0,
                                            100,
                                            shape=[20, 1],
                                            dtype="int64")
H
HydrogenSulfate 已提交
1544 1545
                label_data[0] = -1
                weight_data = paddle.rand([100])
1546 1547 1548 1549
                paddle.nn.functional.cross_entropy(input=input_data,
                                                   label=label_data,
                                                   weight=weight_data,
                                                   ignore_index=-100)
H
HydrogenSulfate 已提交
1550 1551 1552

            self.assertRaises(ValueError, test_LabelValue_ExceedMin)

H
HydrogenSulfate 已提交
1553
            def static_test_WeightLength_NotEqual():
1554
                input_np = np.random.random([2, 4]).astype('float32')
H
HydrogenSulfate 已提交
1555
                label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
1556
                weight_np = np.random.random([3]).astype('float32')
H
HydrogenSulfate 已提交
1557 1558 1559 1560 1561 1562
                paddle.enable_static()
                prog = fluid.Program()
                startup_prog = fluid.Program()
                place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
                ) else fluid.CPUPlace()
                with fluid.program_guard(prog, startup_prog):
1563 1564 1565
                    input = fluid.data(name='input',
                                       shape=[2, 4],
                                       dtype='float32')
H
HydrogenSulfate 已提交
1566
                    label = fluid.data(name='label', shape=[2], dtype='int64')
1567 1568 1569
                    weight = fluid.data(name='weight',
                                        shape=[3],
                                        dtype='float32')  #weight for each class
H
HydrogenSulfate 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
                    cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                        weight=weight)
                    ret = cross_entropy_loss(input, label)

                    exe = fluid.Executor(place)
                    static_ret = exe.run(prog,
                                         feed={
                                             'input': input_np,
                                             'label': label_np,
                                             "weight": weight_np
                                         },
                                         fetch_list=[ret])
                    self.assertIsNotNone(static_ret)

            self.assertRaises(ValueError, static_test_WeightLength_NotEqual)

1586

1587 1588
if __name__ == "__main__":
    unittest.main()