test_cross_entropy_loss.py 70.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
21 22
from test_softmax_op import stable_softmax
from test_softmax_with_cross_entropy_op import cross_entropy
R
root 已提交
23
from paddle.fluid import Program, program_guard
24
from paddle.fluid.framework import _test_eager_guard
25 26


27
def log_softmax(x, axis=-1):
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    softmax_out = np.apply_along_axis(stable_softmax, axis, x)
    return np.log(softmax_out)


def cross_entropy_loss_1d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
    C = input_shape[1]
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
43 44
    ###1. compute softmax cross_entropy (with weight)
    ###   Note: only support hard labels.
45 46 47 48 49 50 51 52
    for i in range(N):
        cur_target = label[i]
        if cur_target == ignore_index:
            out[i] = 0
            continue
        cur_weight = weight[cur_target] if weight is not None else 1
        total_weight += cur_weight
        out[i] = -log_softmax_out[i][cur_target] * cur_weight
53

H
HydrogenSulfate 已提交
54
    ###2. deal with reduction
55 56 57
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
58 59
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
60 61 62 63 64 65 66 67 68 69 70 71
    elif reduction == 'none':
        return out


def cross_entropy_loss_2d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
72 73 74
    H = input_shape[1]
    W = input_shape[2]

75 76 77 78 79 80 81 82 83 84 85
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
    for i in range(N):
        for h in range(H):
            for w in range(W):
                cur_target = label[i][h][w]
                if cur_target == ignore_index:
                    out[i][h][w] = 0
                    continue
                cur_weight = weight[cur_target] if weight is not None else 1
                total_weight += cur_weight
86 87
                out[i][h][
                    w] = -log_softmax_out[i][h][w][cur_target] * cur_weight
88 89 90
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
91 92
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
93 94 95 96
    elif reduction == 'none':
        return out


97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
def cross_entropy_soft(softmax,
                       label,
                       axis,
                       N,
                       weight=None,
                       reduction='mean',
                       ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            cur_soft_label = label[i]
            cur_weight = np.dot(weight, cur_soft_label)
            total_weight += cur_weight
            weighted_loss[i] = loss[i] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


def cross_entropy_soft_2d(softmax,
                          label,
                          axis,
                          N,
                          H,
                          W,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            for h in range(H):
                for w in range(W):
                    cur_soft_label = label[i][h][w]
                    cur_weight = np.dot(weight, cur_soft_label)
                    total_weight += cur_weight
                    weighted_loss[i][h][w] = loss[i][h][w] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


189
class CrossEntropyLoss(unittest.TestCase):
190

R
ronnywang 已提交
191 192 193
    def setUp(self):
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
194 195 196 197 198

    ###test for deprecated softmax_with_cross_entropy
    def test_softmax_with_cross_entropy(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
199 200
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

217 218 219 220 221 222 223
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

        paddle.set_device("cpu")

        paddle.disable_static()
        paddle_loss_swce = paddle.nn.functional.softmax_with_cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis)

        paddle_loss_ce = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)

        self.assertTrue(np.allclose(paddle_loss_swce.numpy(), expected))
        self.assertTrue(np.allclose(paddle_loss_ce.numpy(), expected))

    ###soft_label test start
    ###soft_label test 1
    def test_cross_entropy_loss_soft_1d(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
251 252
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

269 270 271 272 273 274 275
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
295 296
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
297
        with fluid.program_guard(prog, startup_prog):
298 299 300 301 302 303
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 2
    def test_cross_entropy_loss_soft_1d_weight(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
326 327
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        if self.soft_label:
            self.labels = np.random.uniform(0.1, 1.0,
                                            self.shape).astype(self.dtype)
            self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)
        else:
            axis_dim = self.shape[self.axis]
            self.shape[self.axis] = 1
348 349 350 351
            self.labels = np.random.randint(0,
                                            axis_dim,
                                            self.shape,
                                            dtype="int64")
352 353

        #1. numpy
354 355 356 357 358 359 360
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        # 3.static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
379 380
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
381
        with fluid.program_guard(prog, startup_prog):
382 383 384 385 386 387
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
R
ronnywang 已提交
388
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 3
    def test_cross_entropy_loss_soft_1d_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
412 413
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
431 432 433 434 435 436 437
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
438 439 440

        paddle.set_device("cpu")

H
HydrogenSulfate 已提交
441
        #2 dygraph
442 443 444 445 446 447 448 449 450 451 452 453 454 455
        paddle.disable_static()
        paddle_loss_mean = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=self.weight,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_mean.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
456 457
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
458
        with fluid.program_guard(prog, startup_prog):
459 460 461 462 463 464
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
465 466 467 468 469 470

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
471 472 473 474 475 476
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels
                                 },
                                 fetch_list=[ret])
477 478 479 480 481 482 483 484 485 486
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 4
    def test_cross_entropy_loss_soft_1d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
487 488
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
506 507 508 509 510 511 512
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
531 532
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
533
        with fluid.program_guard(prog, startup_prog):
534 535 536 537 538 539
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
R
ronnywang 已提交
540
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 5
    def test_cross_entropy_loss_soft_2d(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
563 564
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 3
        self.H = 2
        self.W = 2
        self.C = 5
        self.shape = [self.N, self.H, self.W, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
584 585 586 587 588 589 590 591 592
        expected = cross_entropy_soft_2d(softmax,
                                         self.labels,
                                         self.axis,
                                         self.N,
                                         self.H,
                                         self.W,
                                         weight=self.weight,
                                         reduction=self.reduction,
                                         ignore_index=self.ignore_index)
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
612 613
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
614
        with fluid.program_guard(prog, startup_prog):
615 616 617 618 619 620
            input = fluid.data(name='input',
                               shape=[self.N, self.H, self.W, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.H, self.W, self.C],
                               dtype=self.dtype)
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 6
    def test_cross_entropy_loss_soft_2d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
643 644
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 3
        self.H = 2
        self.W = 2
        self.C = 5
        self.shape = [self.N, self.H, self.W, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
664 665 666 667 668 669 670 671 672
        expected = cross_entropy_soft_2d(softmax,
                                         self.labels,
                                         self.axis,
                                         self.N,
                                         self.H,
                                         self.W,
                                         weight=self.weight,
                                         reduction=self.reduction,
                                         ignore_index=self.ignore_index)
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
691 692
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
693
        with fluid.program_guard(prog, startup_prog):
694 695 696 697 698 699
            input = fluid.data(name='input',
                               shape=[self.N, self.H, self.W, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.H, self.W, self.C],
                               dtype=self.dtype)
R
ronnywang 已提交
700
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test end

722
    def test_cross_entropy_loss_1d_with_mean_ignore(self):
R
ronnywang 已提交
723
        input_np = np.random.random([2, 4]).astype(self.dtype)
724 725 726 727
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
728 729
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
730
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
731
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
            label = fluid.data(name='label', shape=[2], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(ignore_index=0)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]

        with fluid.dygraph.guard():
747 748 749 750
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(axis=1,
                                                                 ignore_index=0)
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
751 752 753 754 755 756 757
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=0)[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

758 759 760 761 762 763 764 765
    def test_cross_entropy_loss_1d_with_mean_ignore_negative(self):
        N = 100
        C = 200
        input_np = np.random.random([N, C]).astype(self.dtype)
        label_np = -np.ones((N)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
766 767
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
            label = fluid.data(name='label', shape=[N], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                ignore_index=-1)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                axis=1, ignore_index=-1)
786 787
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
788 789 790 791 792 793 794 795
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=-1)[0]

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

796
    def test_cross_entropy_loss_1d_with_weight_mean_ignore(self):
797 798
        N = 100
        C = 200
R
ronnywang 已提交
799
        input_np = np.random.random([N, C]).astype(self.dtype)
800
        label_np = np.random.randint(0, C, size=(N)).astype(np.int64)
R
ronnywang 已提交
801
        weight_np = np.random.random([C]).astype(self.dtype)
802 803 804
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
805 806
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
807
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
808
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
809
            label = fluid.data(name='label', shape=[N], dtype='int64')
810 811 812 813
            weight = fluid.data(name='weight', shape=[C],
                                dtype=self.dtype)  #weight for each class
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight,
                                                                 ignore_index=0)
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np),
                axis=1,
                ignore_index=0)
831 832
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
833 834
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
835 836 837 838
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         ignore_index=0)[0]
839

840 841 842 843
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

H
HydrogenSulfate 已提交
844 845 846 847 848 849 850 851 852 853
    def test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel(self):
        N = 100
        C = 200
        input_np = np.random.random([N, C]).astype(self.dtype)
        label_np = np.random.randint(0, C, size=(N)).astype(np.int64)
        label_np[0] = 255
        weight_np = np.random.random([C]).astype(self.dtype)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
854
                weight=fluid.dygraph.to_variable(weight_np), ignore_index=255)
855 856
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
H
HydrogenSulfate 已提交
857 858
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
859 860 861 862
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         ignore_index=255)[0]
H
HydrogenSulfate 已提交
863 864 865

        self.assertTrue(np.allclose(dy_ret_value, expected))

866
    def test_cross_entropy_loss_1d_with_weight_mean(self):
R
ronnywang 已提交
867
        input_np = np.random.random([2, 4]).astype(self.dtype)
868
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
R
ronnywang 已提交
869
        weight_np = np.random.random([4]).astype(self.dtype)  #shape:C
870
        paddle.enable_static()
871 872
        prog = fluid.Program()
        startup_prog = fluid.Program()
873 874
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
875
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
876
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
877
            label = fluid.data(name='label', shape=[2], dtype='int64')
878 879
            weight = fluid.data(name='weight', shape=[4],
                                dtype=self.dtype)  #weight for each class
880 881 882 883 884 885 886 887 888 889 890 891
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
892 893
        expected = cross_entropy_loss_1d(input_np, label_np,
                                         weight=weight_np)[0]
894

895 896
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
897
                weight=fluid.dygraph.to_variable(weight_np), axis=1)
898 899
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
900 901
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
902 903
        expected = cross_entropy_loss_1d(input_np, label_np,
                                         weight=weight_np)[0]
904
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
905 906
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
907

908
    def test_cross_entropy_loss_1d_with_weight_sum(self):
R
ronnywang 已提交
909
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
910
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
R
ronnywang 已提交
911
        weight_np = np.random.random([200]).astype(self.dtype)  #C
912
        paddle.enable_static()
913 914
        prog = fluid.Program()
        startup_prog = fluid.Program()
915 916
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
917
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
918
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
919
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
920
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
937 938
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
939 940
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
941 942 943 944
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='sum')[0]
945
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
946 947
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
948

949
    def test_cross_entropy_loss_1d_with_weight_none(self):
R
ronnywang 已提交
950
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
951
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
R
ronnywang 已提交
952
        weight_np = np.random.random([200]).astype(self.dtype)  #C
953

954
        paddle.enable_static()
955 956
        prog = fluid.Program()
        startup_prog = fluid.Program()
957 958
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
959
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
960
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
961
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
962
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
963

964 965 966 967 968 969 970 971 972 973 974 975
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
976
            static_ret = np.squeeze(static_ret)
977 978 979 980
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
981 982
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
983
            dy_ret_value = dy_ret.numpy()
984
            dy_ret_value = np.squeeze(dy_ret_value)
985
            self.assertIsNotNone(dy_ret_value)
986 987 988 989
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='none')
990
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
991 992 993 994
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_with_weight_none_func(self):
R
ronnywang 已提交
995
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
996
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N
R
ronnywang 已提交
997
        weight_np = np.random.random([200]).astype(self.dtype)  #C
998 999 1000
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
1001 1002
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1003
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1004
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1005
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
1006
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
1007 1008 1009 1010
            ret = paddle.nn.functional.cross_entropy(input,
                                                     label,
                                                     weight=weight,
                                                     reduction='none')
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            static_ret = np.squeeze(static_ret)
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            dy_ret = paddle.nn.functional.cross_entropy(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np),
                weight=fluid.dygraph.to_variable(weight_np),
                reduction='none')
            dy_ret_value = dy_ret.numpy()
            dy_ret_value = np.squeeze(dy_ret_value)
            self.assertIsNotNone(dy_ret_value)
1031 1032 1033 1034
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='none')
1035
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
1036 1037 1038 1039
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_mean(self):
R
ronnywang 已提交
1040
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1041 1042
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1043 1044
        prog = fluid.Program()
        startup_prog = fluid.Program()
1045 1046
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1047
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1048
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1049 1050 1051 1052 1053
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
1054 1055 1056 1057
                                 feed={
                                     'input': input_np,
                                     'label': label_np
                                 },
1058 1059 1060 1061
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
1062 1063
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1064 1065 1066 1067 1068 1069 1070 1071
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_sum(self):
R
ronnywang 已提交
1072
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1073 1074
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1075 1076
        prog = fluid.Program()
        startup_prog = fluid.Program()
1077 1078
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1079
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1080
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1081 1082 1083 1084 1085 1086
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
1087 1088 1089 1090
                                 feed={
                                     'input': input_np,
                                     'label': label_np
                                 },
1091 1092 1093 1094 1095
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
1096 1097
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1098 1099 1100 1101 1102 1103 1104 1105
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='sum')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_none(self):
R
ronnywang 已提交
1106
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1107 1108
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1109 1110
        prog = fluid.Program()
        startup_prog = fluid.Program()
1111 1112
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1113
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1114
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1115 1116 1117 1118 1119 1120
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
1121 1122 1123 1124
                                 feed={
                                     'input': input_np,
                                     'label': label_np
                                 },
1125
                                 fetch_list=[ret])
1126
            static_ret = np.squeeze(static_ret)
1127 1128 1129 1130
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
1131 1132
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1133
            dy_ret_value = dy_ret.numpy()
1134
            dy_ret_value = np.squeeze(dy_ret_value)
1135 1136 1137 1138 1139 1140 1141
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_with_weight_none(self):
R
ronnywang 已提交
1142
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1143 1144
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW1
R
ronnywang 已提交
1145
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1146 1147

        paddle.enable_static()
1148 1149
        prog = fluid.Program()
        startup_prog = fluid.Program()
1150 1151
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1152
        with fluid.program_guard(prog, startup_prog):
1153 1154 1155
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1156
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1157
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
1170
            static_ret = np.squeeze(static_ret)
1171 1172 1173 1174
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
1175 1176
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1177
            dy_ret_value = dy_ret.numpy()
1178
            dy_ret_value = np.squeeze(dy_ret_value)
1179
            self.assertIsNotNone(dy_ret_value)
1180 1181 1182 1183
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='none')
1184 1185
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
1186 1187 1188 1189
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_with_weight_axis_change_mean(self):
        input_np = np.random.random(size=(2, 3, 2, 2)).astype(self.dtype)  #NCHW
1190 1191
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1192 1193 1194 1195 1196
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C

        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
1197 1198
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1199
        with fluid.program_guard(prog, startup_prog):
1200 1201 1202
            input = fluid.data(name='input',
                               shape=[2, 3, 2, 2],
                               dtype=self.dtype)
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='mean', axis=1)
            # specify the class channels to axis 1
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])

            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
1222 1223 1224
                weight=fluid.dygraph.to_variable(weight_np),
                reduction='mean',
                axis=1)
1225 1226
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1227 1228
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1229 1230 1231 1232
        expected = cross_entropy_loss_2d(np.transpose(input_np, [0, 2, 3, 1]),
                                         label_np,
                                         weight=weight_np,
                                         reduction='mean')[0]
1233 1234
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
1235 1236
        self.assertTrue(np.allclose(dy_ret_value, expected))

H
HydrogenSulfate 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    def test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel(self):
        N = 4
        C = 3
        H = 512
        W = 512
        input_np = np.random.random([N, H, W, C]).astype(self.dtype)
        label_np = np.random.randint(0, C, size=(N, H, W)).astype(np.int64)
        label_np[0, 0, 0] = 255
        weight_np = np.random.random([C]).astype(self.dtype)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
1248
                weight=fluid.dygraph.to_variable(weight_np), ignore_index=255)
1249 1250
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
H
HydrogenSulfate 已提交
1251 1252
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1253 1254 1255 1256
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         ignore_index=255)[0]
H
HydrogenSulfate 已提交
1257 1258
        self.assertTrue(np.allclose(dy_ret_value, expected))

1259
    def test_cross_entropy_loss_2d_with_weight_mean(self):
R
ronnywang 已提交
1260
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1261 1262
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
R
ronnywang 已提交
1263
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1264
        paddle.enable_static()
1265 1266
        prog = fluid.Program()
        startup_prog = fluid.Program()
1267 1268
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1269
        with fluid.program_guard(prog, startup_prog):
1270 1271 1272
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1273
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1274
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='mean')
1291 1292
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1293 1294
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1295 1296 1297 1298
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='mean')[0]
1299 1300 1301 1302 1303
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_with_weight_sum(self):
R
ronnywang 已提交
1304
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1305 1306
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
R
ronnywang 已提交
1307
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1308 1309
        paddle.enable_static()

1310 1311
        prog = fluid.Program()
        startup_prog = fluid.Program()
1312 1313
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1314
        with fluid.program_guard(prog, startup_prog):
1315 1316 1317
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1318
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1319
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
1336 1337
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1338 1339
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1340 1341 1342 1343
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='sum')[0]
1344 1345 1346 1347 1348
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_none(self):
R
ronnywang 已提交
1349
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1350 1351
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1352
        paddle.enable_static()
1353 1354
        prog = fluid.Program()
        startup_prog = fluid.Program()
1355 1356
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1357
        with fluid.program_guard(prog, startup_prog):
1358 1359 1360
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1361
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
1372
            static_ret = np.squeeze(static_ret)
1373 1374 1375 1376
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
1377 1378
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1379
            dy_ret_value = dy_ret.numpy()
1380
            dy_ret_value = np.squeeze(dy_ret_value)
1381 1382 1383 1384 1385 1386 1387
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_mean(self):
R
ronnywang 已提交
1388
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1389 1390
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1391
        paddle.enable_static()
1392 1393
        prog = fluid.Program()
        startup_prog = fluid.Program()
1394 1395
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1396
        with fluid.program_guard(prog, startup_prog):
1397 1398 1399
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1400
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
1416 1417
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1418 1419
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1420 1421
        expected = cross_entropy_loss_2d(input_np, label_np,
                                         reduction='mean')[0]
1422 1423 1424 1425 1426
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_sum(self):
R
ronnywang 已提交
1427
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1428 1429
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1430
        paddle.enable_static()
1431 1432
        prog = fluid.Program()
        startup_prog = fluid.Program()
1433 1434
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1435
        with fluid.program_guard(prog, startup_prog):
1436 1437 1438
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1439
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
1455 1456
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1457 1458 1459
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='sum')[0]
1460
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
1461 1462
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
    def test_soft_1d_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_cross_entropy_loss_soft_1d()
            self.test_cross_entropy_loss_soft_1d_weight()
            self.test_cross_entropy_loss_soft_1d_mean()
            self.test_cross_entropy_loss_soft_1d_weight_mean()

    # put all testcases in one test will be failed
    def test_soft_2d_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_cross_entropy_loss_soft_2d()
            self.test_cross_entropy_loss_soft_2d_weight_mean()

    def test_other_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_cross_entropy_loss_1d_with_mean_ignore()
            self.test_cross_entropy_loss_1d_with_mean_ignore_negative()
            self.test_cross_entropy_loss_1d_with_weight_mean_ignore()
            self.test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel(
            )
            self.test_cross_entropy_loss_1d_with_weight_mean()
            self.test_cross_entropy_loss_1d_with_weight_sum()
            self.test_cross_entropy_loss_1d_with_weight_none()
            self.test_cross_entropy_loss_1d_with_weight_none_func()
            self.test_cross_entropy_loss_1d_mean()
            self.test_cross_entropy_loss_1d_sum()
            self.test_cross_entropy_loss_1d_none()
            self.test_cross_entropy_loss_2d_with_weight_none()
            self.test_cross_entropy_loss_2d_with_weight_axis_change_mean()
            self.test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel(
            )
            self.test_cross_entropy_loss_2d_with_weight_mean()
            self.test_cross_entropy_loss_2d_with_weight_sum()
            self.test_cross_entropy_loss_2d_none()
            self.test_cross_entropy_loss_2d_mean()
            self.test_cross_entropy_loss_2d_sum()

1501

1502
class TestCrossEntropyFAPIError(unittest.TestCase):
1503

1504 1505 1506
    def test_errors(self):
        with program_guard(Program(), Program()):

H
HydrogenSulfate 已提交
1507
            def test_WeightLength_NotEqual():
1508
                input_data = paddle.rand(shape=[20, 100])
1509 1510 1511 1512
                label_data = paddle.randint(0,
                                            100,
                                            shape=[20, 1],
                                            dtype="int64")
H
HydrogenSulfate 已提交
1513
                weight_data = paddle.rand([100 + 1])
1514 1515 1516 1517
                paddle.nn.functional.cross_entropy(input=input_data,
                                                   label=label_data,
                                                   weight=weight_data,
                                                   ignore_index=-100)
H
HydrogenSulfate 已提交
1518

H
HydrogenSulfate 已提交
1519
            self.assertRaises(ValueError, test_WeightLength_NotEqual)
H
HydrogenSulfate 已提交
1520

H
HydrogenSulfate 已提交
1521 1522
            def test_LabelValue_ExceedMax():
                input_data = paddle.rand(shape=[20, 100])
1523 1524 1525 1526
                label_data = paddle.randint(0,
                                            100,
                                            shape=[20, 1],
                                            dtype="int64")
H
HydrogenSulfate 已提交
1527 1528
                label_data[0] = 100
                weight_data = paddle.rand([100])
1529 1530 1531 1532
                paddle.nn.functional.cross_entropy(input=input_data,
                                                   label=label_data,
                                                   weight=weight_data,
                                                   ignore_index=-100)
H
HydrogenSulfate 已提交
1533 1534 1535 1536 1537

            self.assertRaises(ValueError, test_LabelValue_ExceedMax)

            def test_LabelValue_ExceedMin():
                input_data = paddle.rand(shape=[20, 100])
1538 1539 1540 1541
                label_data = paddle.randint(0,
                                            100,
                                            shape=[20, 1],
                                            dtype="int64")
H
HydrogenSulfate 已提交
1542 1543
                label_data[0] = -1
                weight_data = paddle.rand([100])
1544 1545 1546 1547
                paddle.nn.functional.cross_entropy(input=input_data,
                                                   label=label_data,
                                                   weight=weight_data,
                                                   ignore_index=-100)
H
HydrogenSulfate 已提交
1548 1549 1550

            self.assertRaises(ValueError, test_LabelValue_ExceedMin)

H
HydrogenSulfate 已提交
1551
            def static_test_WeightLength_NotEqual():
1552
                input_np = np.random.random([2, 4]).astype('float32')
H
HydrogenSulfate 已提交
1553
                label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
1554
                weight_np = np.random.random([3]).astype('float32')
H
HydrogenSulfate 已提交
1555 1556 1557 1558 1559 1560
                paddle.enable_static()
                prog = fluid.Program()
                startup_prog = fluid.Program()
                place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
                ) else fluid.CPUPlace()
                with fluid.program_guard(prog, startup_prog):
1561 1562 1563
                    input = fluid.data(name='input',
                                       shape=[2, 4],
                                       dtype='float32')
H
HydrogenSulfate 已提交
1564
                    label = fluid.data(name='label', shape=[2], dtype='int64')
1565 1566 1567
                    weight = fluid.data(name='weight',
                                        shape=[3],
                                        dtype='float32')  #weight for each class
H
HydrogenSulfate 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
                    cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                        weight=weight)
                    ret = cross_entropy_loss(input, label)

                    exe = fluid.Executor(place)
                    static_ret = exe.run(prog,
                                         feed={
                                             'input': input_np,
                                             'label': label_np,
                                             "weight": weight_np
                                         },
                                         fetch_list=[ret])
                    self.assertIsNotNone(static_ret)

            self.assertRaises(ValueError, static_test_WeightLength_NotEqual)

1584

1585 1586
if __name__ == "__main__":
    unittest.main()