test_machine_translation.py 8.4 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yan Chunwei 已提交
15 16
import numpy as np
import paddle.v2 as paddle
Q
Qiao Longfei 已提交
17
import paddle.v2.fluid as fluid
Y
Yan Chunwei 已提交
18 19
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
Q
Qiao Longfei 已提交
20
import paddle.v2.fluid.layers as pd
Q
Qiao Longfei 已提交
21
from paddle.v2.fluid.executor import Executor
Y
Yan Chunwei 已提交
22 23 24 25

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
Q
Qiao Longfei 已提交
26 27
hidden_dim = 32
word_dim = 16
Y
Yan Chunwei 已提交
28
IS_SPARSE = True
Q
Qiao Longfei 已提交
29 30
batch_size = 2
max_length = 8
Y
Yan Chunwei 已提交
31 32
topk_size = 50
trg_dic_size = 10000
Q
Qiao Longfei 已提交
33
beam_size = 2
Y
Yan Chunwei 已提交
34

Q
Qiao Longfei 已提交
35 36
decoder_size = hidden_dim

Q
Qiao Longfei 已提交
37
place = core.CPUPlace()
Q
Qiao Longfei 已提交
38

Q
Qiao Longfei 已提交
39 40

def encoder():
Q
Qiao Longfei 已提交
41
    # encoder
Q
Qiao Longfei 已提交
42
    src_word_id = pd.data(
Q
Qiao Longfei 已提交
43
        name="src_word_id", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
44
    src_embedding = pd.embedding(
Q
Qiao Longfei 已提交
45 46 47 48 49 50
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

Q
Qiao Longfei 已提交
51 52 53 54 55
    fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = pd.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = pd.sequence_last_step(input=lstm_hidden0)
    return encoder_out

Q
Qiao Longfei 已提交
56

Q
Qiao Longfei 已提交
57
def decoder_train(context):
Q
Qiao Longfei 已提交
58
    # decoder
Q
Qiao Longfei 已提交
59
    trg_language_word = pd.data(
Q
Qiao Longfei 已提交
60
        name="target_language_word", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
61
    trg_embedding = pd.embedding(
Q
Qiao Longfei 已提交
62 63 64 65 66 67
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

Q
Qiao Longfei 已提交
68
    rnn = pd.DynamicRNN()
Q
Qiao Longfei 已提交
69 70
    with rnn.block():
        current_word = rnn.step_input(trg_embedding)
Q
Qiao Longfei 已提交
71 72
        pre_state = rnn.memory(init=context)
        current_state = pd.fc(input=[current_word, pre_state],
Q
Qiao Longfei 已提交
73 74
                              size=decoder_size,
                              act='tanh')
Q
Qiao Longfei 已提交
75 76 77 78 79 80

        current_score = pd.fc(input=current_state,
                              size=target_dict_dim,
                              act='softmax')
        rnn.update_memory(pre_state, current_state)
        rnn.output(current_score)
Q
Qiao Longfei 已提交
81 82

    return rnn()
Y
Yan Chunwei 已提交
83 84


Q
Qiao Longfei 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
def decoder_decode(context):
    init_state = context
    array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
    counter = pd.zeros(shape=[1], dtype='int64')

    # fill the first element with init_state
    state_array = pd.create_array('float32')
    pd.array_write(init_state, array=state_array, i=counter)

    # ids, scores as memory
    ids_array = pd.create_array('int64')
    scores_array = pd.create_array('float32')

    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
    init_scores = pd.data(
        name="init_scores", shape=[1], dtype="float32", lod_level=2)

    pd.array_write(init_ids, array=ids_array, i=counter)
    pd.array_write(init_scores, array=scores_array, i=counter)

    cond = pd.less_than(x=counter, y=array_len)

    while_op = pd.While(cond=cond)
    with while_op.block():
        pre_ids = pd.array_read(array=ids_array, i=counter)
        pre_state = pd.array_read(array=state_array, i=counter)
        pre_score = pd.array_read(array=scores_array, i=counter)

        # expand the lod of pre_state to be the same with pre_score
        pre_state_expanded = pd.sequence_expand(pre_state, pre_score)

        pre_ids_emb = pd.embedding(
            input=pre_ids,
            size=[dict_size, word_dim],
            dtype='float32',
            is_sparse=IS_SPARSE)

        # use rnn unit to update rnn
        current_state = pd.fc(input=[pre_ids_emb, pre_state_expanded],
                              size=decoder_size,
                              act='tanh')

        # use score to do beam search
        current_score = pd.fc(input=current_state,
                              size=target_dict_dim,
                              act='softmax')
        topk_scores, topk_indices = pd.topk(current_score, k=50)
        selected_ids, selected_scores = pd.beam_search(
            pre_ids, topk_indices, topk_scores, beam_size, end_id=10, level=0)

        pd.increment(x=counter, value=1, in_place=True)

        # update the memories
        pd.array_write(current_state, array=state_array, i=counter)
        pd.array_write(selected_ids, array=ids_array, i=counter)
        pd.array_write(selected_scores, array=scores_array, i=counter)

        pd.less_than(x=counter, y=array_len, cond=cond)

    translation_ids, translation_scores = pd.beam_search_decode(
        ids=ids_array, scores=scores_array)

    # return init_ids, init_scores

    return translation_ids, translation_scores


def set_init_lod(data, lod, place):
    res = core.LoDTensor()
    res.set(data, place)
    res.set_lod(lod)
    return res


Y
Yan Chunwei 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = core.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


Q
Qiao Longfei 已提交
174 175 176 177
def train_main():
    context = encoder()
    rnn_out = decoder_train(context)
    label = pd.data(
Q
Qiao Longfei 已提交
178
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
179 180
    cost = pd.cross_entropy(input=rnn_out, label=label)
    avg_cost = pd.mean(x=cost)
Q
Qiao Longfei 已提交
181 182 183

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimizer.minimize(avg_cost)
Y
Yan Chunwei 已提交
184 185 186

    train_data = paddle.batch(
        paddle.reader.shuffle(
Q
Qiao Longfei 已提交
187
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
Y
Yan Chunwei 已提交
188 189 190 191 192 193 194
        batch_size=batch_size)

    exe = Executor(place)

    exe.run(framework.default_startup_program())

    batch_id = 0
Q
Qiao Longfei 已提交
195
    for pass_id in xrange(1):
Y
Yan Chunwei 已提交
196 197
        for data in train_data():
            word_data = to_lodtensor(map(lambda x: x[0], data), place)
Q
Qiao Longfei 已提交
198 199
            trg_word = to_lodtensor(map(lambda x: x[1], data), place)
            trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
Y
Yan Chunwei 已提交
200
            outs = exe.run(framework.default_main_program(),
Q
Qiao Longfei 已提交
201 202 203 204 205 206 207 208 209 210
                           feed={
                               'src_word_id': word_data,
                               'target_language_word': trg_word,
                               'target_language_next_word': trg_word_next
                           },
                           fetch_list=[avg_cost])
            avg_cost_val = np.array(outs[0])
            print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                  " avg_cost=" + str(avg_cost_val))
            if batch_id > 3:
Q
Qiao Longfei 已提交
211
                break
Q
Qiao Longfei 已提交
212
            batch_id += 1
Y
Yan Chunwei 已提交
213 214


Q
Qiao Longfei 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
def decode_main():
    context = encoder()
    translation_ids, translation_scores = decoder_decode(context)

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
    init_scores_data = np.array(
        [1. for _ in range(batch_size)], dtype='float32')
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
    init_lod = [i for i in range(batch_size)] + [batch_size]
    init_lod = [init_lod, init_lod]

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)
    for _, data in enumerate(train_data()):
        init_ids = set_init_lod(init_ids_data, init_lod, place)
        init_scores = set_init_lod(init_scores_data, init_lod, place)

        src_word_data = to_lodtensor(map(lambda x: x[0], data), place)

        result_ids, result_scores = exe.run(
            framework.default_main_program(),
            feed={
                'src_word_id': src_word_data,
                'init_ids': init_ids,
                'init_scores': init_scores
            },
            fetch_list=[translation_ids, translation_scores],
            return_numpy=False)
        print result_ids.lod()
        break


Y
Yan Chunwei 已提交
253
if __name__ == '__main__':
Q
Qiao Longfei 已提交
254 255
    # train_main()
    decode_main()