jit_kernel_lstm.cc 15.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17 18
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/platform/enforce.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/platform/macros.h"
T
tensor-tang 已提交
20 21 22 23

#ifdef __AVX__
#include <immintrin.h>
#endif
T
tensor-tang 已提交
24 25 26 27

namespace paddle {
namespace operators {
namespace math {
T
tensor-tang 已提交
28
namespace jitkernel {
T
tensor-tang 已提交
29
namespace detail {
T
tensor-tang 已提交
30 31
#ifdef __AVX__
__m256 ExpAVX(__m256 x);
T
tensor-tang 已提交
32
#endif
T
tensor-tang 已提交
33

T
tensor-tang 已提交
34 35 36 37 38 39
#ifdef __AVX2__
__m256 ExpAVX2(__m256 x);
#endif

}  // namespace detail

T
tensor-tang 已提交
40 41
namespace jit = platform::jit;

T
tensor-tang 已提交
42 43 44 45 46 47 48 49 50
#ifdef __AVX__
typedef enum { kSigmoid, kRelu, kTanh, kIdentity } act_type;

class AVXAct {
 public:
  virtual ~AVXAct() = default;
  virtual __m256 Compute(__m256 x) const = 0;
};

T
tensor-tang 已提交
51
template <act_type type, jit::cpu_isa_t isa>
T
tensor-tang 已提交
52 53 54 55 56
class AVXActImpl : public AVXAct {
 public:
  __m256 Compute(__m256 x) const override { PADDLE_THROW("Unkown type!"); }
};

T
tensor-tang 已提交
57 58 59 60 61 62 63 64 65 66 67
#define AVX_SIGMOID(isa, expisa)                                 \
  template <>                                                    \
  __m256 AVXActImpl<kSigmoid, isa>::Compute(__m256 x) const {    \
    __m256 ones = _mm256_set1_ps(1.0f);                          \
    x = _mm256_max_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MIN)); \
    x = _mm256_min_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MAX)); \
    x = _mm256_sub_ps(_mm256_set1_ps(0.0f), x);                  \
    x = expisa(x);                                               \
    x = _mm256_add_ps(ones, x);                                  \
    return _mm256_div_ps(ones, x);                               \
  }
T
tensor-tang 已提交
68

T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78 79
#define AVX_TANH(isa, expisa)                              \
  template <>                                              \
  __m256 AVXActImpl<kTanh, isa>::Compute(__m256 x) const { \
    __m256 ones = _mm256_set1_ps(1.0f);                    \
    x = _mm256_mul_ps(_mm256_set1_ps(-2.0f), x);           \
    x = _mm256_min_ps(x, _mm256_set1_ps(EXP_MAX_INPUT));   \
    x = expisa(x);                                         \
    x = _mm256_add_ps(ones, x);                            \
    x = _mm256_div_ps(_mm256_set1_ps(2.0f), x);            \
    return _mm256_sub_ps(x, ones);                         \
  }
T
tensor-tang 已提交
80

T
tensor-tang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
#define AVX_RELU(isa)                                      \
  template <>                                              \
  __m256 AVXActImpl<kRelu, isa>::Compute(__m256 x) const { \
    return _mm256_max_ps(x, _mm256_setzero_ps());          \
  }

#define AVX_IDENTITY(isa)                                      \
  template <>                                                  \
  __m256 AVXActImpl<kIdentity, isa>::Compute(__m256 x) const { \
    return x;                                                  \
  }

#define FOR_EACH_AVX_ISA(macro_) \
  macro_(jit::avx);              \
  macro_(jit::avx2);             \
  macro_(jit::avx512f)

FOR_EACH_AVX_ISA(AVX_RELU);
FOR_EACH_AVX_ISA(AVX_IDENTITY);

AVX_SIGMOID(jit::avx, detail::ExpAVX);
AVX_TANH(jit::avx, detail::ExpAVX);

#ifdef __AVX2__
AVX_SIGMOID(jit::avx2, detail::ExpAVX2);
AVX_SIGMOID(jit::avx512f, detail::ExpAVX2);
AVX_TANH(jit::avx2, detail::ExpAVX2);
AVX_TANH(jit::avx512f, detail::ExpAVX2);
#endif

#undef FOR_EACH_AVX_ISA
#undef AVX_IDENTITY
#undef AVX_RELU
#undef AVX_TANH
#undef AVX_SIGMOID
T
tensor-tang 已提交
116 117 118

#endif

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
template <typename T>
static std::shared_ptr<const VActKernel<T>> GetActKernel(
    const std::string& type, int n) {
  if (type == "sigmoid") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VSigmoidKernel<T>>(n));
  } else if (type == "relu") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VReluKernel<T>>(n));
  } else if (type == "tanh") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VTanhKernel<T>>(n));
  } else if (type == "identity" || type == "") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VIdentityKernel<T>>(n));
  }
  PADDLE_THROW("Not support type: %s", type);
  return nullptr;
}

T
tensor-tang 已提交
139 140 141 142
/* LSTM JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class LSTMKernelImpl : public LSTMKernel<T> {
 public:
T
tensor-tang 已提交
143
  explicit LSTMKernelImpl(const std::string& act_gate,
T
tensor-tang 已提交
144
                          const std::string& act_cand,
T
tensor-tang 已提交
145
                          const std::string& act_cell, int d)
T
tensor-tang 已提交
146 147 148 149
      : LSTMKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    d3_ = d * 3;
150 151 152 153
    act_gate_d3_ = GetActKernel<T>(act_gate, d3_);
    act_gate_d_ = GetActKernel<T>(act_gate, d);
    act_cand_d_ = GetActKernel<T>(act_cand, d);
    act_cell_d_ = GetActKernel<T>(act_cell, d);
T
tensor-tang 已提交
154 155 156 157
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
    vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
  }

158
  void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht, const T* wp_data,
T
tensor-tang 已提交
159
                   T* checked) const override {
T
tensor-tang 已提交
160
    // gates: W_ch, W_ih, W_fh, W_oh
161
    act_gate_d3_->Compute(gates + d_, gates + d_);
T
tensor-tang 已提交
162 163 164 165 166 167 168 169 170 171

    /* C_t = C_t-1 * fgated + cand_gated * igated */
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, gates + d_);
    vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
    vadd_d_->Compute(gates + d_, gates + d2_, ct);

    /* H_t = act_cell(C_t) * ogated */
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
T
tensor-tang 已提交
172
  }
173 174 175 176 177 178 179 180 181 182
  void ComputeC1H1(T* gates, T* ct, T* ht, const T* wp_data) const override {
    /* C_t = igated * cgated*/
    act_gate_d_->Compute(gates + d_, gates + d_);
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, ct);
    /* H_t = act_cell(C_t) * ogated */
    act_gate_d_->Compute(gates + d3_, gates + d3_);
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
  }
T
tensor-tang 已提交
183 184 185

 private:
  int d_, d2_, d3_;
186 187
  std::shared_ptr<const VActKernel<T>> act_gate_d3_, act_gate_d_, act_cand_d_,
      act_cell_d_;
T
tensor-tang 已提交
188 189
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
  std::shared_ptr<const VAddKernel<T>> vadd_d_;
T
tensor-tang 已提交
190 191 192
#ifdef __AVX__
  std::unique_ptr<const AVXAct> avx_act_gate_, avx_act_cand_, avx_act_cell_;
#endif
T
tensor-tang 已提交
193 194
};

T
tensor-tang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
#define INTRI8_FLOAT(isa)                                                      \
  template <>                                                                  \
  LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl(                            \
      const std::string& act_gate, const std::string& act_cand,                \
      const std::string& act_cell, int d)                                      \
      : LSTMKernel<float>() {                                                  \
    auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> { \
      if (type == "sigmoid") {                                                 \
        return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>());       \
      } else if (type == "relu") {                                             \
        return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>());          \
      } else if (type == "tanh") {                                             \
        return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>());          \
      } else if (type == "identity" || type == "") {                           \
        return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>());      \
      }                                                                        \
      PADDLE_THROW("Not support type: %s", type);                              \
    };                                                                         \
    avx_act_gate_ = GetAVXAct(act_gate);                                       \
    avx_act_cand_ = GetAVXAct(act_cand);                                       \
    avx_act_cell_ = GetAVXAct(act_cell);                                       \
  }                                                                            \
  template <>                                                                  \
  void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt(                          \
      float* gates, const float* ct_1, float* ct, float* ht,                   \
      const float* wp_data, float* checked) const {                            \
    /* gates: W_ch, W_ih, W_fh, W_oh */                                        \
    __m256 c, i, f, o;                                                         \
    c = _mm256_loadu_ps(gates);                                                \
    i = _mm256_loadu_ps(gates + 8);                                            \
    f = _mm256_loadu_ps(gates + 16);                                           \
    o = _mm256_loadu_ps(gates + 24);                                           \
    /* C_t = C_t-1 * fgated + cand_gated * igated*/                            \
    c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i));   \
    i = _mm256_loadu_ps(ct_1);                                                 \
    f = _mm256_mul_ps(i, avx_act_gate_->Compute(f));                           \
    f = _mm256_add_ps(c, f);                                                   \
    _mm256_storeu_ps(ct, f);                                                   \
    /* H_t = act_cell(C_t) * ogated */                                         \
    o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o));   \
    _mm256_storeu_ps(ht, o);                                                   \
  }                                                                            \
  template <>                                                                  \
  void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1(                          \
      float* gates, float* ct, float* ht, const float* wp_data) const {        \
    __m256 c, i, o;                                                            \
    c = _mm256_loadu_ps(gates);                                                \
    i = _mm256_loadu_ps(gates + 8);                                            \
    o = _mm256_loadu_ps(gates + 24);                                           \
    /* C_t = igated * cgated*/                                                 \
    c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c));   \
    _mm256_storeu_ps(ct, c);                                                   \
    /* H_t = act_cell(C_t) * ogated */                                         \
    o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o));   \
    _mm256_storeu_ps(ht, o);                                                   \
T
tensor-tang 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263
  }

// TODO(TJ): optimize keq16

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
264 265 266 267 268 269 270 271 272 273 274
/* Peephole JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class PeepholeKernelImpl : public LSTMKernel<T> {
 public:
  explicit PeepholeKernelImpl(const std::string& act_gate,
                              const std::string& act_cand,
                              const std::string& act_cell, int d)
      : LSTMKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    d3_ = d * 3;
275 276 277
    act_gate_d_ = GetActKernel<T>(act_gate, d);
    act_cand_d_ = GetActKernel<T>(act_cand, d);
    act_cell_d_ = GetActKernel<T>(act_cell, d);
T
tensor-tang 已提交
278 279
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
    vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
280 281
    vadd_d2_ = KernelPool::Instance().template Get<VAddKernel<T>>(d2_);
    act_gate_d2_ = GetActKernel<T>(act_gate, d2_);
T
tensor-tang 已提交
282 283
  }

284
  void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht, const T* wp_data,
T
tensor-tang 已提交
285
                   T* checked) const override {
286 287 288 289 290 291
    /* get fgated and igated*/
    vmul_d_->Compute(wp_data, ct_1, checked);
    vmul_d_->Compute(wp_data + d_, ct_1, checked + d_);
    vadd_d2_->Compute(checked, gates + d_, gates + d_);
    act_gate_d2_->Compute(gates + d_, gates + d_);
    /* C_t = C_t-1 * fgated + cand_gated * igated*/
T
tensor-tang 已提交
292 293 294 295
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, gates + d_);
    vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
    vadd_d_->Compute(gates + d_, gates + d2_, ct);
296 297 298 299 300 301 302 303
    /* get ogated*/
    vmul_d_->Compute(wp_data + d2_, ct, gates + d_);
    vadd_d_->Compute(gates + d_, gates + d3_, gates + d3_);
    act_gate_d_->Compute(gates + d3_, gates + d3_);
    /* H_t = act_cell(C_t) * ogated */
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
  }
T
tensor-tang 已提交
304

305 306 307 308 309 310 311 312
  void ComputeC1H1(T* gates, T* ct, T* ht, const T* wp_data) const override {
    /* C_t = igated * cgated*/
    act_gate_d_->Compute(gates + d_, gates + d_);
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, ct);
    /* get outgated, put W_oc * C_t on igated */
    vmul_d_->Compute(wp_data + d2_, ct, gates + d_);
    vadd_d_->Compute(gates + d_, gates + d3_, gates + d3_);
T
tensor-tang 已提交
313
    /* H_t = act_cell(C_t) * ogated */
314
    act_gate_d_->Compute(gates + d3_, gates + d3_);
T
tensor-tang 已提交
315 316 317
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
  }
T
tensor-tang 已提交
318

T
tensor-tang 已提交
319 320
 private:
  int d_, d2_, d3_;
321 322
  std::shared_ptr<const VActKernel<T>> act_gate_d2_, act_gate_d_, act_cand_d_,
      act_cell_d_;
T
tensor-tang 已提交
323
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
324
  std::shared_ptr<const VAddKernel<T>> vadd_d_, vadd_d2_;
T
tensor-tang 已提交
325 326 327 328 329 330 331 332 333
};

#define JITKERNEL_DECLARE_LSTM(ker_class, ker_dtype)                  \
  template <>                                                         \
  std::shared_ptr<const LSTMKernel<ker_dtype>>                        \
  KernelPool::Get<LSTMKernel<ker_dtype>, const std::string&,          \
                  const std::string&, const std::string&, int, bool>( \
      const std::string& act_gate, const std::string& act_cand,       \
      const std::string& act_cell, int d, bool use_peephole)
T
tensor-tang 已提交
334

T
tensor-tang 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348
#define JITKERNEL_KEY_LSTM(ker_key, dtype_key)                               \
  #ker_key #dtype_key + std::to_string(d) + act_gate + act_cand + act_cell + \
                                       (use_peephole ? "p" : "n")

#define JITKERNEL_NEW_LSTM_IMPL(ker, dtype, isa, k)                    \
  if (use_peephole) {                                                  \
    p = std::dynamic_pointer_cast<ker<dtype>>(                         \
        std::make_shared<PeepholeKernelImpl<dtype, isa, k>>(           \
            act_gate, act_cand, act_cell, d));                         \
  } else {                                                             \
    p = std::dynamic_pointer_cast<ker<dtype>>(                         \
        std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_cand, \
                                                   act_cell, d));      \
  }
T
tensor-tang 已提交
349 350 351 352

REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
                        JITKERNEL_KEY_LSTM, JITKERNEL_NEW_LSTM_IMPL);

T
tensor-tang 已提交
353
#undef INTRI8_FLOAT
T
tensor-tang 已提交
354 355 356
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
T
tensor-tang 已提交
357 358 359 360
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle