batch_norm_op.cc 24.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
Q
qingqing01 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
Q
qingqing01 已提交
18
#include <unordered_map>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/data_layout.h"
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
23 24 25 26

namespace paddle {
namespace operators {

Q
qingqing01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Scale"),
                 "Input(Scale) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Mean"),
                 "Input(Mean) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Variance"),
                 "Input(Variance) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Y"),
                 "Output(Y) of ConvOp should not be null.");
  bool is_test = ctx->Attrs().Get<bool>("is_test");
  if (!is_test) {
    PADDLE_ENFORCE(ctx->HasOutput("MeanOut"),
                   "Output(MeanOut) of ConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"),
                   "Output(VarianceOut) of ConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("SavedMean"),
                   "Output(SavedMean) of ConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"),
                   "Output(SavedVariance) of ConvOp should not be null.");
Q
Qiao Longfei 已提交
49
  }
K
Kexin Zhao 已提交
50

Q
qingqing01 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
                    "Mean and MeanOut should share the same memory");
  PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0], ctx->Outputs("VarianceOut")[0],
                    "Variance and VarianceOut should share the same memory");

  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

  PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                 "Input X must have 2 to 5 dimensions.");

  const int64_t C =
      (data_layout == DataLayout::kNCHW ? x_dims[1]
                                        : x_dims[x_dims.size() - 1]);

68 69
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
70

C
ceci3 已提交
71 72 73
  PADDLE_ENFORCE_EQ(scale_dim.size(), 1UL);
  PADDLE_ENFORCE_EQ(scale_dim.size(), 1UL);

74 75 76 77 78 79 80 81 82 83
  bool check = true;
  if ((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0 ||
                              framework::product(bias_dim) <= 0)) {
    check = false;
  }

  if (check) {
    PADDLE_ENFORCE_EQ(scale_dim[0], C);
    PADDLE_ENFORCE_EQ(scale_dim[0], C);
  }
Q
qingqing01 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  ctx->SetOutputDim("Y", x_dims);
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  auto input_data_type = ctx.Input<Tensor>("X")->type();
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Scale")->type(),
                    "Scale input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Bias")->type(),
                    "Bias input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Mean")->type(),
                    "Mean input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Variance")->type(),
                    "Variance input should be of float type");

  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
114
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
115 116 117 118
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
K
Kexin Zhao 已提交
119
  }
Q
qingqing01 已提交
120
#endif
Q
Qiao Longfei 已提交
121

Q
qingqing01 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
}

void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
        PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                       "'epsilon' should be between 0.0 and 0.001.");
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_with_relu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
  AddComment(R"DOC(
182
Batch Normalization.
Q
Qiao Longfei 已提交
183

184 185 186 187 188 189
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
190 191

)DOC");
Q
qingqing01 已提交
192
}
C
chengduo 已提交
193

Q
Qiao Longfei 已提交
194
template <typename T>
Q
QI JUN 已提交
195 196
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
197 198 199 200 201
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
202 203 204 205
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

    bool global_stats = is_test || use_global_stats;

Q
QI JUN 已提交
206 207 208
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
209 210 211

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
212 213
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
214 215
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
216 217
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

233
    if (!global_stats) {
Q
Qiao Longfei 已提交
234 235 236 237 238 239 240 241
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

242 243 244 245 246 247
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
248 249
        // Only 1 element in normalization dimension,
        // we skip the batch norm calculation, let y = x.
250
        framework::TensorCopy(*x, ctx.GetPlace(), y);
251 252 253
        return;
      }

Q
QI JUN 已提交
254 255
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
256 257 258 259 260 261 262 263 264 265 266 267
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
268
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
282
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
283 284 285 286 287 288 289 290 291 292
      }

      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
293
    if (global_stats) {
Q
Qiao Longfei 已提交
294 295 296 297 298 299 300 301 302 303 304
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
305 306
        global_stats ? ctx.Input<Tensor>("Mean")->data<T>()
                     : ctx.Output<Tensor>("SavedMean")->data<T>(),
Q
Qiao Longfei 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
320 321
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
322 323 324 325 326 327 328 329
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
330
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
331 332 333 334 335 336 337 338 339
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
340
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
341 342 343 344
    }
  }
};

Q
qingqing01 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
  PADDLE_ENFORCE(ctx->HasInput("X"));
  PADDLE_ENFORCE(ctx->HasInput("Scale"), "Input(scale) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                 "Input(Y@GRAD) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("SavedMean"),
                 "Input(SavedMean) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("SavedVariance"),
                 "Input(SavedVariance) should not be null");

  // check output
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")),
                   "Output(Scale@GRAD) and Output(Bias@GRAD) should not be "
                   "null at same time");
  }
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
    PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_mkldnn"),
                   "Using global stats during training is not supported "
                   "in gradient op kernel of batch_norm_mkldnn_op now.");
  }
Q
Qiao Longfei 已提交
369

Q
qingqing01 已提交
370 371 372 373 374
  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
  const int C = (data_layout == DataLayout::kNCHW ? x_dims[1]
                                                  : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
375

Q
qingqing01 已提交
376 377 378 379
  ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
380
  }
Q
qingqing01 已提交
381
}
Q
Qiao Longfei 已提交
382

Q
qingqing01 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
    PADDLE_THROW("can't find Y@GRAD");
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW("can't find Y@GRAD");
  }
398

Q
qingqing01 已提交
399 400 401
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
402

403
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
404 405 406 407 408
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
409
#endif
410

Q
qingqing01 已提交
411 412 413
  return framework::OpKernelType(ctx.Input<Tensor>("X")->type(), ctx.GetPlace(),
                                 layout, library);
}
Q
Qiao Longfei 已提交
414 415

template <typename T>
Q
QI JUN 已提交
416
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
417 418 419 420 421 422 423 424 425
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
426
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
427 428
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const float epsilon = ctx.Attr<float>("epsilon");
Q
QI JUN 已提交
429 430
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
431 432 433 434

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
435 436
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
437 438
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
439 440
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
441 442 443 444 445 446 447 448
    const int sample_size = x->numel() / N / C;

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
449 450 451 452 453 454 455 456

    const T *mean_data = saved_mean->data<T>();
    const T *inv_var_data = saved_inv_variance->data<T>();
    Tensor inv_var_tensor;
    if (use_global_stats) {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_variance = ctx.Input<Tensor>("Variance");
      mean_data = running_mean->data<T>();
Z
Zeng Jinle 已提交
457
      inv_var_tensor.Resize({C});
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
      T *running_inv_var_data = inv_var_tensor.mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> inv_var_tmp(running_inv_var_data, C);
      ConstEigenVectorArrayMap<T> var_arr(running_variance->data<T>(), C);

      inv_var_tmp = (var_arr + epsilon).sqrt().inverse().eval();
      inv_var_data = running_inv_var_data;
    }

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

    T *d_bias_data = nullptr;
    T *d_scale_data = nullptr;
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
    }
Q
Qiao Longfei 已提交
478 479 480 481 482

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
483 484
    EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
Q
Qiao Longfei 已提交
485

486 487 488 489
    if (d_scale && d_bias) {
      d_bias_arr.setZero();
      d_scale_arr.setZero();
    }
Q
Qiao Longfei 已提交
490

491 492
    if ((N * sample_size) == 1 && !use_global_stats) {
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
493 494 495
      return;
    }

496 497
    int scale_coefff = use_global_stats ? 1 : N * sample_size;
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / scale_coefff;
Q
Qiao Longfei 已提交
498

L
lvmengsi 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    Tensor dy_sum;
    dy_sum.Resize({C});
    dy_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_sum_arr(dy_sum.mutable_data<T>(ctx.GetPlace()),
                                      C);

    Tensor dy_mul_x_sub_mean_mul_invstd_sum;
    dy_mul_x_sub_mean_mul_invstd_sum.Resize({C});
    dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_mul_x_sub_mean_mul_invstd_sum_arr(
        dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace()), C);

    dy_sum_arr.setZero();
    dy_mul_x_sub_mean_mul_invstd_sum_arr.setZero();

Q
QI JUN 已提交
514 515
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
516 517 518 519 520 521
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);
        d_x_arr.setZero();

L
lvmengsi 已提交
522 523 524 525 526 527 528 529
        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          dy_sum_arr(c) += d_y_arr.col(nc).sum();
          dy_mul_x_sub_mean_mul_invstd_sum_arr(c) +=
              ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
                  .sum();
        }

530
        if (d_scale && d_bias) {
L
lvmengsi 已提交
531 532
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
Q
Qiao Longfei 已提交
533
        }
L
lvmengsi 已提交
534

535 536 537 538 539
        if (!use_global_stats) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) +=
                scale_inv_var_nhw(c) *
L
lvmengsi 已提交
540 541 542
                (d_y_arr.col(nc) * N * sample_size - dy_sum_arr(c) -
                 (x_arr.col(nc) - mean_arr[c]) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr(c) * inv_var_arr(c));
543 544 545 546 547 548
          }
        } else {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) += scale_inv_var_nhw(c) * d_y_arr.col(nc);
          }
Q
Qiao Longfei 已提交
549 550 551
        }
        break;
      }
Q
QI JUN 已提交
552
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
553 554 555 556 557 558
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);
        d_x_arr.setZero();

L
lvmengsi 已提交
559 560 561 562 563
        for (int nhw = 0; nhw < N * sample_size; ++nhw) {
          dy_sum_arr += d_y_arr.col(nhw);
          dy_mul_x_sub_mean_mul_invstd_sum_arr +=
              (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
        }
564 565

        if (d_scale && d_bias) {
L
lvmengsi 已提交
566 567
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
568 569 570 571 572 573
        }

        if (!use_global_stats) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) +=
                scale_inv_var_nhw *
L
lvmengsi 已提交
574 575 576
                (d_y_arr.col(nhw) * N * sample_size - dy_sum_arr -
                 (x_arr.col(nhw) - mean_arr) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr * inv_var_arr);
577 578 579 580 581
          }
        } else {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) += scale_inv_var_nhw * d_y_arr.col(nhw);
          }
Q
Qiao Longfei 已提交
582 583 584 585
        }
        break;
      }
      default:
Q
QI JUN 已提交
586
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
587 588 589 590
    }
  }
};

Q
qingqing01 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
std::unique_ptr<framework::OpDesc> BatchNormGradMaker::Apply() const {
  auto *op = new framework::OpDesc();
  op->SetType(GradOpType());
  op->SetInput("X", Input("X"));
  op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));

  op->SetInput("Scale", Input("Scale"));
  op->SetInput("Bias", Input("Bias"));
  op->SetInput("SavedMean", Output("SavedMean"));
  op->SetInput("SavedVariance", Output("SavedVariance"));

  // used when setting use_global_stats True during training
  if (boost::get<bool>(GetAttr("use_global_stats"))) {
    op->SetInput("Mean", Output("MeanOut"));
    op->SetInput("Variance", Output("VarianceOut"));
  }
607

Q
qingqing01 已提交
608
  op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
609

Q
qingqing01 已提交
610 611 612
  op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
Y
Yu Yang 已提交
613

Q
qingqing01 已提交
614 615
  return std::unique_ptr<framework::OpDesc>(op);
}
Y
Yu Yang 已提交
616

Q
Qiao Longfei 已提交
617 618 619 620
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
621
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
622 623
                  ops::BatchNormOpInferVarType, ops::BatchNormGradMaker);
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);
Y
Yu Yang 已提交
624

Q
QI JUN 已提交
625
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
626 627
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
628 629
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
630 631
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);