qr_op.cc 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/qr_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

namespace paddle {
namespace operators {
using DDim = framework::DDim;

class QrOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "qr");
    OP_INOUT_CHECK(ctx->HasOutput("Q"), "Output", "Q", "qr");
    OP_INOUT_CHECK(ctx->HasOutput("R"), "Output", "R", "qr");

    auto x_dims = ctx->GetInputDim("X");
    int x_rank = x_dims.size();
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "the rank of input must greater than 2"));
    bool compute_q;
    bool reduced_mode;
    int m = x_dims[x_rank - 2];
    int n = x_dims[x_rank - 1];
    int min_mn = std::min(m, n);
    std::string mode = ctx->Attrs().Get<std::string>("mode");
    std::tie(compute_q, reduced_mode) = _parse_qr_mode(mode);

    if (compute_q) {
      int k = reduced_mode ? min_mn : m;
      auto q_dims_vec = framework::vectorize(x_dims);
      q_dims_vec[q_dims_vec.size() - 1] = k;
      ctx->SetOutputDim("Q", framework::make_ddim(q_dims_vec));
    } else {
      ctx->SetOutputDim("Q", framework::make_ddim({0}));
    }

    int k = reduced_mode ? min_mn : m;
    auto r_dims_vec = framework::vectorize(x_dims);
    r_dims_vec[r_dims_vec.size() - 2] = k;
    r_dims_vec[r_dims_vec.size() - 1] = n;
    ctx->SetOutputDim("R", framework::make_ddim(r_dims_vec));

    ctx->ShareLoD("X", /*->*/ "Q");
    ctx->ShareLoD("X", /*->*/ "R");
  }
};

class QrOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor), The input tensor of qr op.");
    AddOutput("Q", "(Tensor), The output Q tensor of qr op.");
    AddOutput("R", "(Tensor), The output R tensor of qr op.");
    AddAttr<std::string>(
        "mode",
        "(string, default \"reduced\"). "
        "If mode is \"reduced\", Qr op will return reduced Q and R matrices. "
        "If mode is \"complete\", Qr op will return complete Q and R matrices. "
        "If mode is \"r\", Qr op will only return reduced R matrix.")
        .SetDefault("reduced");
    AddComment(R"DOC(
Qr Operator.

This operator is used to perform QR operation for batched matrics $X$.
$$Q, R = qr(X)$$

)DOC");
  }
};

class QrGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Q")), "Input",
                   "Q@Grad", "QrGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("R")), "Input",
                   "R@Grad", "QrGrad");
    OP_INOUT_CHECK(ctx->HasInput("Q"), "Input", "Q", "QrGrad");
    OP_INOUT_CHECK(ctx->HasInput("R"), "Input", "R", "QrGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   "X@Grad", "QrGrad");

    auto x_dims = ctx->GetInputDim(("X"));
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(dtype, ctx.GetPlace());
  }
};

template <typename T>
class QrGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("qr_grad");
    retv->SetInput(framework::GradVarName("Q"), this->OutputGrad("Q"));
    retv->SetInput(framework::GradVarName("R"), this->OutputGrad("R"));
    retv->SetInput("Q", this->Output("Q"));
    retv->SetInput("R", this->Output("R"));
    retv->SetInput("X", this->Input("X"));
    retv->SetAttrMap(this->Attrs());
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(qr, ops::QrOp, ops::QrOpMaker,
                  ops::QrGradMaker<paddle::framework::OpDesc>,
                  ops::QrGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(qr_grad, ops::QrGradOp);

REGISTER_OP_CPU_KERNEL(qr, ops::QrCPUKernel<float>, ops::QrCPUKernel<double>);

REGISTER_OP_CPU_KERNEL(
    qr_grad, ops::QrGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::QrGradKernel<paddle::platform::CPUDeviceContext, double>);