// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/qr_op.h" #include #include #include #include #include "paddle/fluid/framework/ddim.h" #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/platform/mkldnn_helper.h" #endif namespace paddle { namespace operators { using DDim = framework::DDim; class QrOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "qr"); OP_INOUT_CHECK(ctx->HasOutput("Q"), "Output", "Q", "qr"); OP_INOUT_CHECK(ctx->HasOutput("R"), "Output", "R", "qr"); auto x_dims = ctx->GetInputDim("X"); int x_rank = x_dims.size(); PADDLE_ENFORCE_GE(x_dims.size(), 2, platform::errors::InvalidArgument( "the rank of input must greater than 2")); bool compute_q; bool reduced_mode; int m = x_dims[x_rank - 2]; int n = x_dims[x_rank - 1]; int min_mn = std::min(m, n); std::string mode = ctx->Attrs().Get("mode"); std::tie(compute_q, reduced_mode) = _parse_qr_mode(mode); if (compute_q) { int k = reduced_mode ? min_mn : m; auto q_dims_vec = framework::vectorize(x_dims); q_dims_vec[q_dims_vec.size() - 1] = k; ctx->SetOutputDim("Q", framework::make_ddim(q_dims_vec)); } else { ctx->SetOutputDim("Q", framework::make_ddim({0})); } int k = reduced_mode ? min_mn : m; auto r_dims_vec = framework::vectorize(x_dims); r_dims_vec[r_dims_vec.size() - 2] = k; r_dims_vec[r_dims_vec.size() - 1] = n; ctx->SetOutputDim("R", framework::make_ddim(r_dims_vec)); ctx->ShareLoD("X", /*->*/ "Q"); ctx->ShareLoD("X", /*->*/ "R"); } }; class QrOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of qr op."); AddOutput("Q", "(Tensor), The output Q tensor of qr op."); AddOutput("R", "(Tensor), The output R tensor of qr op."); AddAttr( "mode", "(string, default \"reduced\"). " "If mode is \"reduced\", Qr op will return reduced Q and R matrices. " "If mode is \"complete\", Qr op will return complete Q and R matrices. " "If mode is \"r\", Qr op will only return reduced R matrix.") .SetDefault("reduced"); AddComment(R"DOC( Qr Operator. This operator is used to perform QR operation for batched matrics $X$. $$Q, R = qr(X)$$ )DOC"); } }; class QrGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Q")), "Input", "Q@Grad", "QrGrad"); OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("R")), "Input", "R@Grad", "QrGrad"); OP_INOUT_CHECK(ctx->HasInput("Q"), "Input", "Q", "QrGrad"); OP_INOUT_CHECK(ctx->HasInput("R"), "Input", "R", "QrGrad"); OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output", "X@Grad", "QrGrad"); auto x_dims = ctx->GetInputDim(("X")); ctx->SetOutputDim(framework::GradVarName("X"), x_dims); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X"); return framework::OpKernelType(dtype, ctx.GetPlace()); } }; template class QrGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; void Apply(GradOpPtr retv) const override { retv->SetType("qr_grad"); retv->SetInput(framework::GradVarName("Q"), this->OutputGrad("Q")); retv->SetInput(framework::GradVarName("R"), this->OutputGrad("R")); retv->SetInput("Q", this->Output("Q")); retv->SetInput("R", this->Output("R")); retv->SetInput("X", this->Input("X")); retv->SetAttrMap(this->Attrs()); retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(qr, ops::QrOp, ops::QrOpMaker, ops::QrGradMaker, ops::QrGradMaker); REGISTER_OPERATOR(qr_grad, ops::QrGradOp); REGISTER_OP_CPU_KERNEL(qr, ops::QrCPUKernel, ops::QrCPUKernel); REGISTER_OP_CPU_KERNEL( qr_grad, ops::QrGradKernel, ops::QrGradKernel);