test_dygraph_mnist_fp16.py 5.2 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle.fluid as fluid
21
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
22
from paddle.fluid.framework import _test_eager_guard
C
chengduo 已提交
23 24 25


class SimpleImgConvPool(fluid.dygraph.Layer):
26

C
chengduo 已提交
27
    def __init__(self,
28
                 num_channels,
C
chengduo 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 dtype='float32',
                 param_attr=None,
                 bias_attr=None):
45
        super(SimpleImgConvPool, self).__init__()
C
chengduo 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
        self._conv2d = Conv2D(num_channels=num_channels,
                              num_filters=num_filters,
                              filter_size=filter_size,
                              stride=conv_stride,
                              padding=conv_padding,
                              dilation=conv_dilation,
                              groups=conv_groups,
                              param_attr=param_attr,
                              bias_attr=bias_attr,
                              use_cudnn=use_cudnn,
                              dtype=dtype,
                              act=act)

        self._pool2d = Pool2D(pool_size=pool_size,
                              pool_type=pool_type,
                              pool_stride=pool_stride,
                              pool_padding=pool_padding,
                              global_pooling=global_pooling,
                              use_cudnn=use_cudnn)
C
chengduo 已提交
66 67 68 69 70 71 72 73

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
74

75 76
    def __init__(self, dtype="float32"):
        super(MNIST, self).__init__()
C
chengduo 已提交
77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        self._simple_img_conv_pool_1 = SimpleImgConvPool(num_channels=3,
                                                         num_filters=20,
                                                         filter_size=5,
                                                         pool_size=2,
                                                         pool_stride=2,
                                                         act="relu",
                                                         dtype=dtype,
                                                         use_cudnn=True)

        self._simple_img_conv_pool_2 = SimpleImgConvPool(num_channels=20,
                                                         num_filters=50,
                                                         filter_size=5,
                                                         pool_size=2,
                                                         pool_stride=2,
                                                         act="relu",
                                                         dtype=dtype,
                                                         use_cudnn=True)
C
chengduo 已提交
95

96
        self.pool_2_shape = 50 * 53 * 53
C
chengduo 已提交
97
        SIZE = 10
98 99 100 101 102
        scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5
        self._linear = Linear(
            self.pool_2_shape,
            10,
            param_attr=fluid.param_attr.ParamAttr(
103 104
                initializer=fluid.initializer.NormalInitializer(loc=0.0,
                                                                scale=scale)),
105 106
            act="softmax",
            dtype=dtype)
C
chengduo 已提交
107 108 109 110

    def forward(self, inputs, label):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
111 112
        x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
        cost = self._linear(x)
C
chengduo 已提交
113 114 115 116 117 118
        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)
        return avg_loss


class TestMnist(unittest.TestCase):
119

120
    def func_mnist_fp16(self):
C
chengduo 已提交
121 122 123
        if not fluid.is_compiled_with_cuda():
            return
        x = np.random.randn(1, 3, 224, 224).astype("float16")
124
        y = np.random.randint(10, size=[1, 1], dtype="int64")
C
chengduo 已提交
125
        with fluid.dygraph.guard(fluid.CUDAPlace(0)):
126
            model = MNIST(dtype="float16")
C
chengduo 已提交
127 128
            x = fluid.dygraph.to_variable(x)
            y = fluid.dygraph.to_variable(y)
129 130
            loss = model(x, y)
            print(loss.numpy())
C
chengduo 已提交
131

132 133 134 135 136
    def test_mnist_fp16(self):
        with _test_eager_guard():
            self.func_mnist_fp16()
        self.func_mnist_fp16()

C
chengduo 已提交
137 138 139

if __name__ == "__main__":
    unittest.main()