test_dygraph_mnist_fp16.py 4.2 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC


class SimpleImgConvPool(fluid.dygraph.Layer):
    def __init__(self,
26
                 num_channels,
C
chengduo 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 dtype='float32',
                 param_attr=None,
                 bias_attr=None):
43
        super(SimpleImgConvPool, self).__init__()
C
chengduo 已提交
44 45

        self._conv2d = Conv2D(
46
            num_channels=num_channels,
C
chengduo 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=param_attr,
            bias_attr=bias_attr,
            use_cudnn=use_cudnn,
            dtype=dtype,
            act=act)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
    def __init__(self, name_scope, dtype="float32"):
        super(MNIST, self).__init__(name_scope)

        self._simple_img_conv_pool_1 = SimpleImgConvPool(
78
            num_channels=3,
C
chengduo 已提交
79 80 81 82 83 84 85 86 87
            num_filters=20,
            filter_size=5,
            pool_size=2,
            pool_stride=2,
            act="relu",
            dtype=dtype,
            use_cudnn=True)

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
88
            num_channels=20,
C
chengduo 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            num_filters=50,
            filter_size=5,
            pool_size=2,
            pool_stride=2,
            act="relu",
            dtype=dtype,
            use_cudnn=True)

        pool_2_shape = 50 * 4 * 4
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(self.full_name(),
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax",
                      dtype=dtype)

    def forward(self, inputs, label):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
        cost = self._fc(x)
        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)
        return avg_loss


class TestMnist(unittest.TestCase):
118 119
    # FIXME(zcd): disable this random failed test temporally.
    @unittest.skip("should fix this later")
C
chengduo 已提交
120 121 122 123 124 125 126 127 128
    def test_mnist_fp16(self):
        if not fluid.is_compiled_with_cuda():
            return
        x = np.random.randn(1, 3, 224, 224).astype("float16")
        y = np.random.randn(1, 1).astype("int64")
        with fluid.dygraph.guard(fluid.CUDAPlace(0)):
            model = MNIST("mnist", dtype="float16")
            x = fluid.dygraph.to_variable(x)
            y = fluid.dygraph.to_variable(y)
129 130
            loss = model(x, y)
            print(loss.numpy())
C
chengduo 已提交
131 132 133 134


if __name__ == "__main__":
    unittest.main()