unsqueeze_op.cc 10.9 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/operators/unsqueeze_op.h"
#include <memory>
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/op_registry.h"
20 21 22 23

namespace paddle {
namespace operators {

24
class UnsqueezeOp : public framework::OperatorWithKernel {
25
 public:
26 27 28 29 30 31 32
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of Unsqueeze operator should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of Unsqueeze operator should not be null.");
33

34 35
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    const auto &x_dims = ctx->GetInputDim("X");
36
    // Validity Check: input tensor dims (<6).
37 38 39
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
                      "Invalid dimensions, the rank of Input(X) "
                      "should be in the range of [1, 6] (Eigen limit)");
40 41
    auto out_dims = GetOutputShape(axes, x_dims);
    ctx->SetOutputDim("Out", out_dims);
42 43 44 45 46
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
47 48
  }

49
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
50
                                        const framework::DDim &in_dims) {
51 52
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
    int cur_output_size = in_dims.size();
53 54 55
    std::vector<int64_t> output_shape(output_size, 0);

    // Validity Check: rank range.
56 57
    PADDLE_ENFORCE_LE(output_size, 6,
                      "The output tensor's rank should be less than 6.");
58 59

    for (int axis : unsqz_dims) {
60
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
61
      // Vaildity Check: the axis bound
62 63
      PADDLE_ENFORCE_GE(cur, 0);
      PADDLE_ENFORCE_LE(cur, cur_output_size);
64 65 66 67 68 69 70 71 72
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }
      output_shape[cur] = 1;
73
      // Add the output size.
74
      cur_output_size++;
75 76
    }

77
    // Make output shape
78 79
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
80 81 82 83 84 85 86 87 88 89 90 91 92 93
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

    return framework::make_ddim(output_shape);
  }
};

class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
94
                              "(std::vector<int>). List of integers,"
95
                              " indicating the dimensions to be inserted")
96
        .AddCustomChecker([](const std::vector<int> &axes) {
97 98
          PADDLE_ENFORCE_EQ(!axes.empty(), true,
                            "Invalid axes, The unsqueeze axes is empty.");
99
          // Validity Check: axes dims (<6).
100 101 102
          PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
                            "Invalid dimensions, dynamic dimensions should be "
                            "within [1, 6] dimensions (Eigen limit).");
103 104
          // Validity Check: the range of unsqueeze aixs.
          for (int axis : axes) {
105 106 107
            PADDLE_ENFORCE_LT(axis, 6,
                              "Invalid dimensions, input axis should be"
                              " within [1, 6] dimensions (Eigen limit).");
108 109
          }
        });
110
    AddComment(R"DOC(
111 112
    Unsqueeze Operator.

113 114 115 116 117 118
    Insert single-dimensional entries to the shape of a tensor.
    Takes one required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
119
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
120 121 122 123
    )DOC");
  }
};

124
class UnsqueezeGradOp : public framework::OperatorWithKernel {
125
 public:
126 127 128
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
129
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
130
    ctx->ShareLoD("X", framework::GradVarName("X"));
131
  }
132
};
133

134 135 136 137 138
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
139
class Unsqueeze2Op : public framework::OperatorWithKernel {
140
 public:
141 142 143 144 145 146 147 148
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of Unsqueeze operator should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of Unsqueeze operator should not be null.");

    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
149
    const auto &x_dims = ctx->GetInputDim("X");
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    // Validity Check: input tensor dims (<6).
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
                      "Invalid dimensions, the rank of Input(X) "
                      "should be in the range of [1, 6] (Eigen limit)");
    auto out_dims = UnsqueezeOp::GetOutputShape(axes, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }

    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("XShape"), true,
        "Output(XShape) of Unsqueeze operator should not be null.");
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }
};

class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
 public:
  void Make() override {
    UnsqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in UnsqueezeGradOp.")
        .AsIntermediate();
  }
};

class Unsqueeze2GradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
    grad_op->SetType("unsqueeze2_grad");
    grad_op->SetInput("XShape", Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

201
class Unsqueeze2GradOp : public framework::OperatorWithKernel {
202
 public:
203 204 205 206 207 208
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE_EQ(context->HasInput("XShape"), true,
                      "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
209 210 211 212 213 214
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

215 216 217 218 219 220
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->type(),
        ctx.device_context());
221 222
  }
};
223 224 225 226 227

DECLARE_INPLACE_OP_INFERER(UnsqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(UnsqueezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
228 229 230 231 232 233
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
234
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp);
235 236

REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
237
                  ops::Unsqueeze2GradOpMaker, ops::UnsqueezeInplaceInferer);
238
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
239
                  ops::UnsqueezeGradInplaceInferer);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

REGISTER_OP_CPU_KERNEL(
    unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    unsqueeze_grad,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    unsqueeze2,
    ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, double>,
    ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    unsqueeze2_grad,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);