framework.py 189.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'ComplexVariable',
53
    'load_op_library',
54
    'require_version',
55
    'device_guard',
G
guofei 已提交
56 57
    'set_flags',
    'get_flags',
58
]
Y
Yu Yang 已提交
59

Q
qiaolongfei 已提交
60 61 62 63
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
64 65
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
66 67
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
68
_current_device = None
69

70 71
global_prog_seed = 0

72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
180
def in_dygraph_mode():
L
lujun 已提交
181
    """
Y
Youwei Song 已提交
182
    This function checks whether the program runs in dynamic graph mode or not.
183 184 185
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
186 187

    Returns:
Y
Youwei Song 已提交
188
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
189 190 191 192

    Examples:
        .. code-block:: python

193
            import paddle.fluid as fluid
L
lujun 已提交
194

195 196 197 198
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
199
    """
L
lujun 已提交
200
    return _dygraph_tracer_ is not None
201 202


203 204 205
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
206
        ), "We don't support %s in imperative mode" % func.__name__
207 208 209 210 211 212 213 214
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
215
        ), "We Only support %s in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative Mode" % func.__name__
216 217 218 219 220
        return func(*args, **kwargs)

    return __impl__


221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


237 238
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
239
fake_interface_only = wrap_decorator(_fake_interface_only_)
240 241


L
lujun 已提交
242 243
def _dygraph_tracer():
    return _dygraph_tracer_
244

W
Wu Yi 已提交
245

M
minqiyang 已提交
246
def _current_expected_place():
L
lujun 已提交
247
    return _dygraph_current_expected_place_
M
minqiyang 已提交
248 249


L
Leo Chen 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
267
def _cpu_num():
268
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
269 270 271 272 273 274 275 276
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
277
        os.environ['CPU_NUM'] = str(1)
278
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
279 280 281 282 283 284 285 286 287 288
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
289 290


C
chengduo 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
306
def cuda_places(device_ids=None):
L
lujun 已提交
307
    """
308 309 310 311 312
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
313 314

    If :code:`device_ids` is None, environment variable of
315
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
316 317 318
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
319
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
320 321

    If :code:`device_ids` is not None, it should be the device
322
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
323 324 325
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
326 327
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
328 329

    Returns:
330
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
331 332 333 334

    Examples:
        .. code-block:: python

335
            import paddle.fluid as fluid
L
lujun 已提交
336 337 338
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
339 340 341
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
342
        device_ids = _cuda_ids()
S
sneaxiy 已提交
343 344 345 346 347 348
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
349
    """
350
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
351 352 353
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
354 355
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
356 357
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
358

359 360
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
361 362

    Returns:
363
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
364 365 366 367

    Examples:
        .. code-block:: python

368
            import paddle.fluid as fluid
L
lujun 已提交
369 370 371
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
372 373 374 375 376 377
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
378
    """
379
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
380 381 382

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
383 384 385 386
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
387

388 389
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
390 391

    Returns:
392
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
393 394 395 396

    Examples:
        .. code-block:: python

397
            import paddle.fluid as fluid
L
lujun 已提交
398 399 400 401 402
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
403 404 405
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
406 407
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
408 409


410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
436
@signature_safe_contextmanager
437 438 439 440
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
441 442 443
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
444 445

    Args:
T
Tao Luo 已提交
446
        prefix(str, optional): prefix. Default is none.
447 448 449

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
450

451
          import paddle.fluid as fluid
452
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
453 454 455 456 457 458
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
459
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
460
                f = fluid.layers.pow(d, 2.0)
461
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
481 482
    """
    # TODO(panyx0718): Only [0-9a-z].
483
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
484 485 486
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
487
        assert prefix, "namescope prefix can not be empty."
488 489
        global _name_scope
        _name_scope = _name_scope.child(prefix)
490 491 492 493
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
494 495 496 497 498 499 500 501 502 503 504 505


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
506 507 508
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
509 510 511 512


def grad_var_name(var_name):
    """
513 514
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
515 516 517
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
518

519
def convert_np_dtype_to_dtype_(np_dtype):
520 521
    """
    Convert the data type in numpy to the data type in Paddle
522

523
    Args:
524
        np_dtype(np.dtype): the data type in numpy.
525

526 527
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
528 529

    """
530 531
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
532
        return core.VarDesc.VarType.FP32
533
    elif dtype == np.float64:
534
        return core.VarDesc.VarType.FP64
535
    elif dtype == np.float16:
536
        return core.VarDesc.VarType.FP16
537
    elif dtype == np.int32:
538
        return core.VarDesc.VarType.INT32
539
    elif dtype == np.int16:
540
        return core.VarDesc.VarType.INT16
541
    elif dtype == np.int64:
542
        return core.VarDesc.VarType.INT64
543
    elif dtype == np.bool:
544
        return core.VarDesc.VarType.BOOL
545 546
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
547 548
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
549 550
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
551
    else:
M
minqiyang 已提交
552
        raise ValueError("Not supported numpy dtype %s" % dtype)
553 554 555


def dtype_is_floating(dtype):
556 557 558
    """
    Check the data type is floating or not.
    Args:
559
        dtype(np.dtype|core.VarDesc.VarType): data type.
560 561 562 563 564
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
565
    if not isinstance(dtype, core.VarDesc.VarType):
566 567
        dtype = convert_np_dtype_to_dtype_(dtype)

568 569 570 571
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
572 573


Y
Yang Yang(Tony) 已提交
574
def _debug_string_(proto, throw_on_error=True):
575 576 577 578 579 580 581 582 583 584 585
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
586
    error_fields = list()
Y
Yang Yang(Tony) 已提交
587
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
588 589
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
590 591 592
    return proto.__str__()


593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
650
    target_block = default_main_program().current_block()
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
705 706
                temp_end = target_block.create_var(dtype='int32')
                target_block.append_op(
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
746

747
    # starts
L
Leo Chen 已提交
748
    if contain_var(slice_start):
749 750 751 752 753 754 755 756
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
757 758 759 760
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
761 762 763 764 765 766 767
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
768 769 770
    else:
        attrs['ends'] = slice_end

771 772
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
773
        if contain_var(slice_step):
774 775 776 777 778 779 780
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
781 782
        else:
            attrs['strides'] = slice_step
783 784 785 786 787 788
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
789
        slice_out_var = target_block.create_var(
790 791 792
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

793
        target_block.append_op(
794 795 796 797 798 799 800
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
801
        strided_slice_out_var = target_block.create_var(
802 803 804
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
805
        target_block.append_op(
806 807 808 809 810 811 812 813
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
814
        reverse_out_var = target_block.create_var(
815 816 817
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
818
        target_block.append_op(
819 820 821 822 823 824 825 826 827 828 829
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
830
class Variable(object):
831
    """
J
Jiabin Yang 已提交
832
    **Notes**:
833
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
834

835 836
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
837 838 839
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
840
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
841 842
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
843

844
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
845
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
846

T
tianshuo78520a 已提交
847
    Most of a Variable's member variables can be set to be None. It mean
848
    it is not available or will be specified later.
849

850
    Examples:
851 852
        In Static Graph Mode:

853 854
        .. code-block:: python

855
            import paddle.fluid as fluid
856
            cur_program = fluid.Program()
857 858 859 860
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
861
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
862 863 864 865 866 867 868 869 870

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

871 872
    """

Y
Yu Yang 已提交
873 874
    def __init__(self,
                 block,
Y
Yu Yang 已提交
875
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
876 877 878 879
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
880
                 capacity=None,
Q
QI JUN 已提交
881
                 persistable=None,
F
fengjiayi 已提交
882
                 error_clip=None,
Y
Yu Yang 已提交
883
                 stop_gradient=False,
F
fengjiayi 已提交
884
                 is_data=False,
H
Huihuang Zheng 已提交
885
                 need_check_feed=False,
H
hong 已提交
886
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
887
                 **kwargs):
Y
Yu Yang 已提交
888 889
        self.block = block
        if name is None:
Y
Yu Yang 已提交
890
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
891

Y
Yu Yang 已提交
892
        if dtype is not None:
893
            if not isinstance(dtype, core.VarDesc.VarType):
894
                dtype = convert_np_dtype_to_dtype_(dtype)
895

H
hong 已提交
896 897
        self.belong_to_optimizer = belong_to_optimizer

898 899 900 901 902
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
903

904 905 906
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
907

908 909 910 911 912 913 914
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
915

916
        if shape is not None:
917
            if is_new_var:
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
959

960 961
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
962

963 964 965 966 967 968 969
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
970

971 972 973 974
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
975

976
    @fake_interface_only
977 978
    def detach(self):
        """
J
Jiabin Yang 已提交
979
        **Notes**:
T
tianshuo78520a 已提交
980
            **This API is ONLY available in Dygraph mode**
981

982
        Returns a new Variable, detached from the current graph.
983

984
        Returns:
J
Jiabin Yang 已提交
985
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
986

987

988 989 990 991 992
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
993
                from paddle.fluid.dygraph import Linear
994 995 996 997
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
998
                    linear = Linear(32, 64)
999
                    data = to_variable(data)
1000
                    x = linear(data)
1001 1002 1003
                    y = x.detach()

        """
1004
        pass
1005

1006
    @fake_interface_only
1007
    def numpy(self):
1008
        """
J
Jiabin Yang 已提交
1009
        **Notes**:
T
tianshuo78520a 已提交
1010
            **This API is ONLY available in Dygraph mode**
1011

J
Jiabin Yang 已提交
1012
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1013 1014 1015 1016 1017

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1018
            ndarray: dtype is same as current Variable
1019 1020 1021 1022 1023 1024

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1025
                from paddle.fluid.dygraph import Linear
1026 1027 1028 1029
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1030
                    linear = Linear(32, 64)
1031
                    data = to_variable(data)
1032
                    x = linear(data)
1033 1034 1035
                    print(x.numpy())

        """
1036
        pass
1037

1038
    @fake_interface_only
1039 1040
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1041
        **Notes**:
T
tianshuo78520a 已提交
1042
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1054
                from paddle.fluid.dygraph import Linear
1055 1056
                import numpy as np

1057
                data = np.ones([3, 1024], dtype='float32')
1058
                with fluid.dygraph.guard():
1059
                    linear = fluid.dygraph.Linear(1024, 4)
1060
                    t = to_variable(data)
1061
                    linear(t)  # call with default weight
1062
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1063 1064
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1065 1066

        """
1067
        pass
1068

1069
    @fake_interface_only
1070
    def backward(self, backward_strategy=None):
1071
        """
J
Jiabin Yang 已提交
1072
        **Notes**:
T
tianshuo78520a 已提交
1073
            **This API is ONLY available in Dygraph mode**
1074 1075 1076

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1077 1078
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1079

J
Jiabin Yang 已提交
1080 1081
        Returns:
            NoneType: None
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1094 1095
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1096 1097 1098 1099 1100 1101 1102 1103 1104
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1105
        pass
1106

1107
    @fake_interface_only
1108
    def gradient(self):
1109
        """
J
Jiabin Yang 已提交
1110
        **Notes**:
T
tianshuo78520a 已提交
1111
            **This API is ONLY available in Dygraph mode**
1112 1113 1114

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1115
        Returns:
1116
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1117 1118 1119 1120 1121 1122 1123

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1124
                # example1: return ndarray
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1152
        """
1153
        pass
1154

1155
    @fake_interface_only
1156
    def clear_gradient(self):
1157
        """
J
Jiabin Yang 已提交
1158
        **Notes**:
T
tianshuo78520a 已提交
1159
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1160 1161

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1162

J
Jiabin Yang 已提交
1163
        Clear  (set to ``0`` ) the Gradient of Current Variable
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1190
        pass
X
Xin Pan 已提交
1191

1192
    def __str__(self):
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1237

F
update  
fengjiayi 已提交
1238
    def to_string(self, throw_on_error, with_details=False):
1239 1240 1241
        """
        Get debug string.

J
Jiabin Yang 已提交
1242 1243 1244 1245 1246
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1247

1248 1249
        Returns:
            str: The debug string.
1250 1251 1252 1253 1254

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1255

1256 1257 1258 1259 1260
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1261
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1262
                print("=============with detail===============")
1263
                print(new_variable.to_string(True, True))
1264
        """
F
update  
fengjiayi 已提交
1265 1266
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1267
        protostr = self.desc.serialize_to_string()
1268
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1269 1270 1271 1272
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1273 1274 1275
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1276
        return res_str
1277 1278 1279

    __repr__ = __str__

1280
    @property
1281
    def stop_gradient(self):
J
Jiabin Yang 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1297 1298
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1299 1300 1301
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1302 1303
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1304 1305 1306 1307
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1308
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1309 1310
                assert (out1.gradient() == 0).all()
        """
1311
        return self._stop_gradient
1312

1313 1314
    @stop_gradient.setter
    def stop_gradient(self, s):
1315
        self._stop_gradient = s
1316

1317 1318
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1340
        return self.desc.persistable()
1341

Y
Yu Yang 已提交
1342 1343
    @persistable.setter
    def persistable(self, p):
1344
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1345

Y
Yu Yang 已提交
1346 1347
    @property
    def name(self):
J
Jiabin Yang 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1364
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1386 1387
    @name.setter
    def name(self, new_name):
1388
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1389

Y
Yu Yang 已提交
1390 1391
    @property
    def shape(self):
J
Jiabin Yang 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1409
        # convert to tuple, make it as same as numpy API.
1410
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1411 1412

    @property
F
fengjiayi 已提交
1413
    def dtype(self):
J
Jiabin Yang 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1430
        return self.desc.dtype()
Y
Yu Yang 已提交
1431 1432 1433

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1455 1456 1457
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1458
        return self.desc.lod_level()
Y
Yu Yang 已提交
1459

Y
Yu Yang 已提交
1460 1461
    @property
    def type(self):
J
Jiabin Yang 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1478
        return self.desc.type()
Y
Yu Yang 已提交
1479

W
Wu Yi 已提交
1480
    def _set_error_clip(self, error_clip):
1481 1482 1483 1484 1485 1486 1487 1488 1489
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1490 1491
        self.error_clip = error_clip

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1532
            raise ValueError("slice step can not be zero")
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1608
    def _cloneVar(self, copy=False):
1609 1610
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1611 1612
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1613 1614 1615 1616
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1617
        new_var = self._cloneVar()
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1628
        new_var = self._cloneVar()
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1639
                return self._cloneVar(True)
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1658
                return self._cloneVar(True)
1659
            index = int(item)
1660
            if (index > 0 and index >= self.shape[axis]) \
1661 1662 1663 1664 1665 1666 1667
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1668
        return _getitem_impl_(self, item)
1669

Y
Yu Yang 已提交
1670

F
fengjiayi 已提交
1671 1672 1673
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1674

1675 1676
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1677 1678 1679 1680
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1681
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1682 1683 1684 1685
        ret_values.append(op_proto)
    return ret_values


1686 1687 1688 1689 1690 1691 1692
class ComplexVariable(object):
    """
    The Variable defined on the complex number domain. It contains two common 
    real number Variables as its members, :attr:`real` and :attr:`imag` 
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1693
        **The constructor of ComplexVariable should not be invoked directly.**
1694

1695
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexVariable with complex number data.**
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

    Args:
        real (Variable): The Variable holding real-part data.
        imag (Variable): The Variable holding imaginery-part data.
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            a = np.array([1.0+2.0j, 0.2])
            with fluid.dygraph.guard():
                var = fluid.dygraph.to_variable(a, name="new_var")
                print(var.name, var.dtype, var.shape)
                # ({'real': u'new_var.real', 'imag': u'new_var.imag'}, 'complex128', [2L]) 
                print(var.numpy())
                # [1. +2.j 0.2+0.j]
    """

    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
        return "REAL: " + self.real.__str__() + "IMAG: " + self.imag.__str__()

    __repr__ = __str__


F
fengjiayi 已提交
1767
class OpProtoHolder(object):
1768 1769 1770 1771
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1781
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1782 1783 1784 1785 1786 1787
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1788 1789 1790 1791 1792 1793 1794 1795
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1796 1797
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1798 1799
        return self.op_proto_map[type]

1800 1801 1802 1803 1804 1805
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1806 1807 1808 1809
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1810
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1811
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1812 1813
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1814 1815
        }

F
fengjiayi 已提交
1816

X
Xin Pan 已提交
1817
class Operator(object):
1818
    """
1819 1820 1821 1822 1823 1824 1825
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1826
        type(str): The type of operator. Default None.
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1847
        Block.append_op or Block._prepend_op instead.
1848 1849 1850 1851

    Examples:
        .. code-block:: python

1852
            import paddle.fluid as fluid
1853
            cur_program = fluid.Program()
1854 1855 1856 1857 1858
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1859
    """
1860
    OP_WITHOUT_KERNEL_SET = {
1861 1862
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1863 1864
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1865
        'c_sync_comm_stream'
1866
    }
1867

Y
Yu Yang 已提交
1868 1869
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1870
                 desc,
Y
Yu Yang 已提交
1871 1872 1873
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1874
                 attrs=None):
L
lujun 已提交
1875
        if in_dygraph_mode():
1876 1877
            if type is None:
                raise ValueError(
1878
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1879
            self._type = type
M
minqiyang 已提交
1880
            self.attrs = attrs if attrs else {}
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1895
                )] = self.block.program._op_role
1896 1897 1898

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1899 1900
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1901 1902 1903 1904 1905 1906 1907 1908

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1909
                    "`type` to initialized an Operator can not be None.")
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1959
                        for index, arg in enumerate(in_args):
1960 1961 1962 1963
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1964
                            elif isinstance(arg, Variable):
1965
                                in_arg_names.append(cpt.to_text(arg.name))
1966
                            else:
1967 1968 1969 1970
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1971 1972
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1999
                        if not in_dygraph_mode():
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2019
    def _has_kernel(self, op_type):
2020 2021
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2022
    def to_string(self, throw_on_error):
2023
        """
2024 2025
        Get debug string.

2026
        Args:
2027 2028
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2029

2030 2031
        Returns:
            str: The debug string.
2032 2033

        """
2034
        protostr = self.desc.serialize_to_string()
2035
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2036 2037
        return _debug_string_(proto, throw_on_error)

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2131
    def __str__(self):
2132
        return self._to_readable_code()
2133 2134 2135

    __repr__ = __str__

F
fengjiayi 已提交
2136 2137
    @property
    def type(self):
2138
        return self.desc.type()
F
fengjiayi 已提交
2139 2140

    def input(self, name):
2141
        """
2142
        Get the input arguments according to the input parameter name.
2143

2144 2145
        Args:
            name(str): The input parameter name.
2146

2147 2148 2149
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2150
        """
F
fengjiayi 已提交
2151 2152
        return self.desc.input(name)

W
Wu Yi 已提交
2153
    def _rename_input(self, old_name, new_name):
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2164
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2165

W
Wu Yi 已提交
2166
    def _rename_output(self, old_name, new_name):
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2177
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2178

F
fengjiayi 已提交
2179 2180 2181 2182
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2183 2184 2185 2186 2187 2188 2189 2190
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2191
    def output(self, name):
2192
        """
2193
        Get output arguments by the output parameter name.
2194

2195 2196
        Args:
            name(str): The output parameter name.
2197

2198 2199 2200
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2201
        """
F
fengjiayi 已提交
2202 2203 2204 2205 2206 2207
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2208 2209 2210 2211 2212 2213 2214 2215
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2216
    def has_attr(self, name):
2217
        """
2218 2219
        Whether this Operator has the attribute with name or not.

2220
        Args:
2221
            name(str): the attribute name.
2222

2223 2224
        Returns:
            bool: True if has this attribute.
2225 2226

        """
F
fengjiayi 已提交
2227 2228 2229
        return self.desc.has_attr(name)

    def attr_type(self, name):
2230
        """
2231
        Get the type of attribute by attribute's name.
2232

2233 2234
        Args:
            name(str): the attribute name.
2235

2236 2237
        Returns:
            core.AttrType: the attribute type.
2238
        """
F
fengjiayi 已提交
2239 2240
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2241
    def _set_attr(self, name, val):
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2252 2253
        self._update_desc_attr(name, val)

2254 2255 2256
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2268 2269
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2270 2271
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2272
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2273 2274 2275 2276
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2277
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2278

F
fengjiayi 已提交
2279 2280 2281 2282 2283
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2284
        """
2285 2286
        Get the attribute by name.

2287
        Args:
2288
            name(str): the attribute name.
2289

2290 2291
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2292 2293
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2294
        return self.desc.attr(name)
Y
Yu Yang 已提交
2295

W
Wu Yi 已提交
2296
    def _block_attr_id(self, name):
2297
        """
G
gongweibao 已提交
2298
        Get the block attribute's id by name.
2299

2300 2301
        Args:
            name(str): the attribute name.
2302

2303 2304
        Returns:
            int: the block index.
2305
        """
W
Wu Yi 已提交
2306
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2307

W
Wu Yi 已提交
2308
    def _block_attr(self, name):
G
gongweibao 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2319
        id = self._block_attr_id(name)
G
gongweibao 已提交
2320 2321 2322
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2323
    def _blocks_attr(self, name):
G
gongweibao 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2334
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2335 2336 2337 2338 2339
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2340
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2351
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2352

J
JiayiFeng 已提交
2353
    def all_attrs(self):
F
fengjiayi 已提交
2354
        """
2355 2356 2357
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2358
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2359 2360 2361 2362
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2363 2364
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2365
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2366 2367 2368
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2369
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2370 2371 2372 2373
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2374 2375
        return attr_map

2376 2377 2378 2379 2380 2381 2382 2383 2384
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
        else:
            return False

Y
Yu Yang 已提交
2385

Y
Yu Yang 已提交
2386
class Block(object):
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2401
        use `Program._create_block()` to create a block.
2402 2403 2404 2405

    Examples:
        .. code-block:: python

2406 2407 2408
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2409 2410 2411 2412 2413 2414 2415 2416 2417
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2418
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2419
        self.desc = program.desc.block(idx)
2420
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2421
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2422
        self.program = program
2423
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2424

2425
    def __str__(self):
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2472

F
fengjiayi 已提交
2473 2474
    def to_string(self, throw_on_error, with_details=False):
        """
2475 2476
        Get debug string.

F
fengjiayi 已提交
2477 2478
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2479
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2480
            with_details(bool): more details about variables and parameters
2481 2482
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2483

2484 2485
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2486 2487 2488 2489
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2490
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2491 2492
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2493
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2494
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2495
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2496
            for op in self.ops:
F
fengjiayi 已提交
2497 2498
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2499 2500 2501
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2502 2503
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2504 2505
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2506 2507 2508

    __repr__ = __str__

Y
Yu Yang 已提交
2509 2510
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2511
        return self.desc.parent
Y
Yu Yang 已提交
2512

Y
Yu Yang 已提交
2513 2514 2515 2516
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2517
    def _set_forward_block_idx(self, idx):
2518 2519 2520 2521 2522 2523 2524 2525 2526
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2527
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2528

2529 2530 2531 2532 2533 2534 2535 2536
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2537 2538
    @property
    def idx(self):
Y
Yu Yang 已提交
2539
        return self.desc.id
Y
Yu Yang 已提交
2540

Q
Qiao Longfei 已提交
2541
    def var(self, name):
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2555
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2556 2557 2558
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2559 2560
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2561
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2562
        return v
Q
Qiao Longfei 已提交
2563

X
Xin Pan 已提交
2564
    def _find_var_recursive(self, name):
2565 2566 2567 2568 2569 2570 2571
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2572
            Variable: the Variable with the giving name. Or None if not found.
2573
        """
Y
Yu Yang 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2598
        return None
Y
Yu Yang 已提交
2599

X
Xin Pan 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2619

Q
Qiao Longfei 已提交
2620
    def all_parameters(self):
2621
        return list(self.iter_parameters())
2622

2623
    def iter_parameters(self):
M
minqiyang 已提交
2624
        return (item[1] for item in six.iteritems(self.vars)
2625
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2626

Y
Yu Yang 已提交
2627
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2628 2629 2630
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2631 2632 2633
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2634
        return var
Y
Yu Yang 已提交
2635

Q
Qiao Longfei 已提交
2636 2637 2638
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2639
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2640 2641
        """
        Rename variable in vars and ops' inputs and outputs
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2654
        """
M
minqiyang 已提交
2655 2656
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2657

T
typhoonzero 已提交
2658
        if not self.has_var(name):
2659
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2660 2661
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2662
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2663 2664 2665 2666 2667 2668
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2669
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2670 2671 2672 2673
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2674
        orig_var_type = v.type
M
minqiyang 已提交
2675
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2676
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2677
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2678
        if var_type == "Parameter":
L
Leo Chen 已提交
2679 2680
            if in_dygraph_mode():
                var = ParamBase(
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2691 2692
                var = Parameter(
                    self,
2693 2694 2695 2696 2697 2698 2699 2700 2701
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2702
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2703 2704
            var = Variable(
                self,
T
typhoonzero 已提交
2705
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2706 2707 2708 2709
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2710
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2711 2712 2713
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2714
        self._sync_with_cpp()
2715
        return var
T
typhoonzero 已提交
2716

W
Wu Yi 已提交
2717 2718
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2719
        self.desc._remove_var(cpt.to_bytes(name))
2720 2721
        del self.vars[name]

Y
Yu Yang 已提交
2722 2723
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2724
        param = None
L
Leo Chen 已提交
2725
        if in_dygraph_mode():
2726
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2727 2728
        else:
            param = Parameter(global_block, *args, **kwargs)
2729
        if 'initializer' in kwargs:
2730 2731 2732 2733 2734

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2735 2736 2737 2738 2739
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2751
                # TODO already inited, do nothing, should log a warning
2752 2753 2754
                pass
            else:
                initializer(param, self)
2755
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2756
        return param
Y
Yu Yang 已提交
2757

Y
Yu Yang 已提交
2758
    def append_op(self, *args, **kwargs):
2759 2760 2761 2762 2763 2764
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2765
        if in_dygraph_mode():
2766
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2767
            type = kwargs.get("type", None)
2768 2769 2770
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2771
                type=type,
M
minqiyang 已提交
2772 2773
                inputs=None,
                outputs=None,
2774
                attrs=attrs)
2775

M
minqiyang 已提交
2776 2777 2778
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2779
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2780 2781

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2782
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2783 2784
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2785
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2786
        else:
2787 2788 2789 2790 2791 2792 2793 2794 2795
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2796
            self.ops.append(op)
M
minqiyang 已提交
2797

2798 2799
        return op

W
Wu Yi 已提交
2800
    def _insert_op(self, index, *args, **kwargs):
2801 2802 2803 2804 2805 2806 2807 2808 2809
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2810 2811
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2812 2813 2814 2815
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2816
    def _remove_op(self, index):
2817 2818 2819 2820 2821 2822 2823 2824 2825
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2826 2827
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2828 2829
        del self.ops[index]

W
Wu Yi 已提交
2830
    def _slice_ops(self, start, end):
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2841
        return self.ops[start:end]
Y
Yancey1989 已提交
2842

W
Wu Yi 已提交
2843
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2844
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2845 2846
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2847
            op = Operator(
J
Jiabin Yang 已提交
2848
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2849

J
Jiabin Yang 已提交
2850
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2851
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2852 2853
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2854
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2855
        else:
2856 2857 2858 2859 2860 2861 2862 2863
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2864
            self.ops.insert(0, op)
2865

Y
Yu Yang 已提交
2866 2867
        return op

W
Wu Yi 已提交
2868
    def _sync_with_cpp(self):
2869
        """
2870 2871
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2872
        """
Q
Qiao Longfei 已提交
2873 2874 2875 2876 2877
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2878
        # sync variables removed from c++ end
2879
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2880
            if not self.desc.find_var(cpt.to_bytes(var)):
2881 2882
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2883
        # sync operators from cpp
2884 2885 2886 2887
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2904 2905 2906 2907 2908

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2909
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2910 2911 2912 2913 2914 2915 2916

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2930 2931 2932 2933
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2934
    def _copy_param_info_from(self, other):
2935
        """
2936 2937
        Copy the information of parameters from the other block.

2938
        Args:
2939 2940 2941 2942 2943
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2944 2945 2946 2947 2948

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2949 2950
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2951
        for p in other.iter_parameters():
2952 2953 2954
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
2955 2956
                # if the Parameter is pruned, v may be None
                continue
2957
            assert isinstance(v, Variable)
2958
            new_p = None
L
Leo Chen 已提交
2959 2960
            if in_dygraph_mode():
                new_p = ParamBase(
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2972 2973
                new_p = Parameter(
                    block=self,
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
2984 2985
            self.vars[new_p.name] = new_p

2986
    def _clone_variable(self, var, force_persistable=True):
2987 2988
        """
        Clone a variable into current block.
2989

2990 2991
        Args:
            var: the variable to be cloned.
2992 2993 2994
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2995 2996

        Returns:
2997
            Variable: the new  variable cloned from 'var' in current block.
2998 2999
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3000 3001 3002 3003 3004
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3005 3006
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3007
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3008 3009 3010 3011 3012 3013
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3014
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3015 3016
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3017 3018 3019 3020 3021 3022 3023
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3024
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3025 3026
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3027
        return ret_var
3028

Y
Yu Yang 已提交
3029

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3125
    def remove_input_by_id(self, node_id):
3126 3127 3128 3129 3130 3131
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3132
        self.node.remove_input(node_id)
3133

3134
    def remove_input(self, node):
3135 3136 3137 3138
        """
        Remove a node from inputs.

        Args:
3139
            node(IrNode): the node being removed.
3140
        """
3141
        self.node.remove_input(node.node)
3142

3143
    def append_input(self, node):
3144 3145 3146 3147
        """
        Append a node in inputs.

        Args:
3148
            node(IrNode): the node being appended.
3149
        """
3150
        self.node.append_input(node.node)
3151 3152 3153 3154 3155 3156 3157 3158

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3159
    def remove_output_by_id(self, node_id):
3160 3161 3162 3163 3164 3165
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3166
        self.node.remove_output(node_id)
3167

3168
    def remove_output(self, node):
3169 3170 3171 3172
        """
        Remove a node from outputs.

        Args:
3173
            node(IrNode): the node being removed.
3174
        """
3175
        self.node.remove_output(node.node)
3176

3177
    def append_output(self, node):
3178 3179 3180 3181
        """
        Append a node in outputs.

        Args:
3182
            node(IrNode): the node being appended.
3183
        """
3184
        self.node.append_output(node.node)
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3232
            "The node variable description can not be None."
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3243
            "The node variable description can not be None."
3244 3245
        return self.node.var().persistable()

3246 3247 3248 3249 3250 3251 3252 3253
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3254
            "The node variable description can not be None."
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3265
            "The node variable description can not be None."
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3276
            "The node variable description can not be None."
3277 3278
        return self.node.var().shape()

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3326
            "The node operator description can not be None."
3327 3328
        self.node.op()._rename_input(old_input_name, new_input_name)

3329 3330 3331 3332 3333 3334 3335 3336 3337
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3338
            "The node operator description can not be None."
3339 3340 3341 3342
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3354
            "The node operator description can not be None."
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3368
            "The node operator description can not be None."
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3379
            "The node operator description can not be None."
3380 3381
        return self.node.op().set_type(new_type)

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3397
            "The node operator description can not be None."
3398 3399 3400 3401
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3402
                all(isinstance(v, Block) for v in val):
3403 3404
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3405
                isinstance(val, core.ProgramDesc):
3406 3407 3408 3409
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3410 3411 3412 3413 3414 3415 3416 3417
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3418
            "The node operator description can not be None."
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3429
            "The node operator description can not be None."
3430 3431
        return self.node.op().output_arg_names()

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3453 3454
class IrGraph(object):
    """
3455
    Python IrGraph. Beneath it is a core.Graph, which is used for
3456
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3457 3458
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3459 3460 3461 3462
    """

    def __init__(self, graph, for_test=False):
        """
3463 3464
        Construct an IrGraph using core.Graph.

3465 3466 3467 3468 3469 3470 3471 3472 3473
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3474 3475 3476 3477
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3478 3479 3480
        Warns:
            The method only clones the graph structure, not its attributes.

3481 3482 3483
        Returns:
            IrGraph: A new and duplicated graph.
        """
3484
        g = self.graph.clone()
3485 3486
        return IrGraph(g, self._for_test)

3487
    def is_test(self):
3488 3489 3490
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3491 3492
        return self._for_test

W
WangZhen 已提交
3493
    def all_nodes(self):
3494 3495 3496
        """
        Return all nodes included in the graph as a set.
        """
3497
        return {IrNode(node) for node in self.graph.nodes()}
3498

3499
    def all_var_nodes(self):
3500 3501 3502
        """
        Return all variable nodes included in the graph as a set.
        """
3503
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3504

3505
    def all_persistable_nodes(self):
3506 3507 3508
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3509 3510 3511 3512 3513
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3514
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3515

3516
    def all_op_nodes(self):
3517 3518 3519
        """
        Return all operator nodes included in the graph as a set.
        """
3520
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3521

3522
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3534
            IrVarNode: the created persistable variable node.
3535
        """
3536 3537 3538 3539 3540
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3541
        return IrVarNode(self.graph.create_var_node(var_desc))
3542 3543

    def create_var_node(self, name, var_type, shape, var_dtype):
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3555
            IrVarNode: the created variable node.
3556 3557
        """

3558 3559 3560 3561
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3562
        return IrVarNode(self.graph.create_var_node(var_desc))
3563 3564

    def create_var_node_from_desc(self, var_desc):
3565 3566 3567 3568 3569 3570 3571 3572
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3573
            IrVarNode: the created variable node.
3574
        """
3575
        return IrVarNode(self.graph.create_var_node(var_desc))
3576 3577

    def create_op_node(self, op_type, attrs, inputs, outputs):
3578 3579 3580 3581 3582 3583 3584
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3585
            outputs(dict): the outputs of the operator node.
3586 3587

        Returns:
3588
            IrOpNode: the created operator node.
3589
        """
3590 3591
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3592
        for attr, value in six.iteritems(attrs):
3593
            self._update_desc_attr(op_desc, attr, value)
3594
        for input_name, var_nodes in six.iteritems(inputs):
3595 3596 3597 3598
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3599
        for output_name, var_nodes in six.iteritems(outputs):
3600 3601 3602 3603
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3604
        return IrOpNode(self.graph.create_op_node(op_desc))
3605 3606

    def create_op_node_from_desc(self, op_desc):
3607 3608 3609 3610 3611 3612 3613
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3614
            IrOpNode: the created operator node.
3615
        """
3616
        return IrOpNode(self.graph.create_op_node(op_desc))
3617 3618

    def update_input_link(self, old_input_node, new_input_node, op_node):
3619 3620 3621 3622
        """
        Update the input's link of a operator node.

        Args:
3623 3624 3625
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3626
        """
3627
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3628 3629
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3630 3631 3632 3633
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3634
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3635

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3646 3647
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3648 3649 3650 3651 3652 3653
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3654
    def link_to(self, node_in, node_out):
3655 3656 3657 3658
        """
        Connect two nodes.

        Args:
3659 3660
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3661
        """
3662
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3663
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3664 3665
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3666 3667

    def safe_remove_nodes(self, remove_nodes):
3668 3669 3670 3671 3672 3673 3674
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3675
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3676 3677 3678 3679
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3680 3681
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3682

Z
Zhen Wang 已提交
3683 3684 3685 3686 3687 3688 3689 3690
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3691
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3692 3693 3694 3695
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3696
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3697 3698 3699
                        ]
                    else:
                        var_nodes[each_var_name].append(
3700 3701
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3702 3703
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3704
    def has_circle(self):
3705 3706 3707 3708 3709 3710
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3711 3712 3713
        return core.has_circle(self.graph)

    def graph_num(self):
3714 3715 3716 3717 3718 3719
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3720 3721 3722
        return core.graph_num(self.graph)

    def topology_sort(self):
3723 3724 3725
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3726
        Notes: the `graph` can not contain a circle.
3727 3728

        Returns:
Z
Zhen Wang 已提交
3729
            list(IrNode): nodes in topology order.
3730
        """
3731
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3732
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3733 3734

    def build_adjacency_list(self):
3735 3736 3737 3738
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3739
            dict{IrNode: set(IrNode)}: the adjacency list.
3740
        """
3741 3742 3743 3744 3745
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3746

3747 3748 3749 3750 3751 3752 3753 3754
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3755
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3756 3757 3758 3759 3760
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3761 3762 3763
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3764
                                          + ' -o ' + pdf_save_path, shell=True)
3765 3766 3767 3768 3769
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3770
        remove_ctr_vars = set()
3771
        if remove_ctr_var:
3772
            for node in self.all_var_nodes():
3773 3774 3775
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3776 3777
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3778 3779
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3780 3781 3782 3783 3784 3785
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3786 3787 3788 3789
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3790 3791
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3792 3793 3794 3795 3796 3797 3798
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3799 3800 3801
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3802
        WARN: When the graph includes backward operator nodes, the
3803 3804 3805 3806 3807 3808
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3809
        convert_pass = core.get_pass('graph_to_program_pass')
3810 3811
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3812 3813 3814 3815
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3843
class Program(object):
D
dzhwinter 已提交
3844
    """
3845 3846
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3847
    it will contain nested block.
3848

J
Jiabin Yang 已提交
3849 3850 3851
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3852

J
Jiabin Yang 已提交
3853
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3854
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3855 3856 3857 3858 3859 3860 3861
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3862 3863 3864 3865
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3866 3867

    Returns:
J
Jiabin Yang 已提交
3868
        Program: An empty Program.
D
dzhwinter 已提交
3869 3870

    Examples:
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3884 3885 3886

    """

3887 3888
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3889 3890
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3891 3892
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3893
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3894
        self.__op_role_var = []
T
tangwei12 已提交
3895

3896 3897
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3898
        self._is_distributed = False
3899
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3900
        self._is_chief = False
3901 3902 3903
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3904
        self._endpoints = []
3905 3906 3907
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3908
        self._trainers_endpoints = []
3909
        # the distributed lookup table names
T
tangwei12 已提交
3910
        self._distributed_lookup_table = None
3911 3912 3913

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3914 3915
        self._use_lamb = False

3916 3917 3918
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3919

3920 3921 3922
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3923
        self._program_config = None
3924

H
hutuxian 已提交
3925 3926 3927
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3928 3929 3930
        # appending gradients times
        self._appending_grad_times = 0

3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
3958
    @property
3959
    def _op_role(self):
Y
yuyang18 已提交
3960 3961 3962 3963 3964 3965 3966 3967
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3968
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3969 3970 3971 3972
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3973 3974
        return self._current_role

3975 3976
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3977 3978 3979
        self._current_role = role

    @property
3980
    def _op_role_var(self):
Y
yuyang18 已提交
3981
        """
3982
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3983

3984
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3985 3986 3987

        Notes: This is a very low-level API. Users should not use it directly.
        """
3988
        return self.__op_role_var
Y
yuyang18 已提交
3989

3990
    @signature_safe_contextmanager
3991 3992 3993 3994 3995
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
3996 3997 3998 3999
        try:
            yield
        finally:
            self._current_role = tmp_role
4000

S
rename  
sneaxiy 已提交
4001
    @signature_safe_contextmanager
W
Wu Yi 已提交
4002
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4003 4004 4005 4006 4007 4008 4009
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4010
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4011 4012 4013

        Examples:

4014
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4015
            >>> p, g = backward(...)
W
Wu Yi 已提交
4016
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4017 4018
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4019
        tmp_role = self._current_role
4020
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4021

Y
yuyang18 已提交
4022 4023
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4024
        self.__op_role_var = [
4025 4026 4027
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4028 4029 4030 4031 4032
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4033

S
rename  
sneaxiy 已提交
4034
    @signature_safe_contextmanager
X
Xin Pan 已提交
4035
    def _lr_schedule_guard(self, is_with_opt=False):
4036 4037 4038 4039 4040 4041 4042
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4043 4044 4045 4046
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4047 4048 4049

        Examples:

4050
            >>> import paddle.fluid as fluid
4051 4052 4053 4054
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4055 4056

        tmp_role = self._current_role
4057
        tmp_var = self.__op_role_var
4058

4059 4060
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4061 4062
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4063
        # TODO(typhoonzero): how to set target learning rate var
4064
        self.__op_role_var = []
4065 4066 4067 4068 4069
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4070

4071
    def __str__(self):
Y
yuyang18 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4120
            program_str += '\n'
4121
        return program_str
Y
Yang Yang(Tony) 已提交
4122

F
fengjiayi 已提交
4123 4124 4125
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4126

J
Jiabin Yang 已提交
4127 4128 4129
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4130

J
Jiabin Yang 已提交
4131
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4132

H
haowang101779990 已提交
4133
        Returns:
J
Jiabin Yang 已提交
4134
            str: The debug string describe current Program.
Y
yuyang18 已提交
4135 4136

        Raises:
J
Jiabin Yang 已提交
4137
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4138

4139 4140 4141 4142 4143 4144
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4145 4146
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4147
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4148
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4149
                print("program string without detail: {}".format(prog_string))
4150
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4151
        """
4152 4153 4154 4155 4156 4157 4158 4159 4160
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4161 4162 4163 4164 4165 4166
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4167 4168
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4169 4170
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4171

W
Wu Yi 已提交
4172
    def _get_desc(self):
Y
yuyang18 已提交
4173 4174 4175 4176 4177 4178 4179
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4180 4181
        return self.desc

X
version  
Xin Pan 已提交
4182 4183 4184
    def _version(self):
        return self.desc._version()

4185
    def clone(self, for_test=False):
Y
yuyang18 已提交
4186
        """
4187
        **Notes**:
J
Jiabin Yang 已提交
4188 4189 4190 4191
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4192
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4193

4194
        Create a new Program with forward content of original one when ``for_test=True``.
4195
        Create a new Program as same as the original one when ``for_test=False``.
4196

J
Jiabin Yang 已提交
4197
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4198 4199 4200
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4201

4202 4203
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4204 4205
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4206
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4207

J
Jiabin Yang 已提交
4208
        For Example:
4209
          ::
L
Luo Tao 已提交
4210

4211 4212 4213 4214 4215 4216 4217 4218
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4219

J
Jiabin Yang 已提交
4220
        Args:
4221

4222 4223
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4224

J
Jiabin Yang 已提交
4225
        Returns:
4226
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4227

Y
yuyang18 已提交
4228 4229 4230

        Examples:

J
Jiabin Yang 已提交
4231
        **Notes: The Program's order maybe different after** :code:`clone` **and
4232
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4233
        example we give you an simple method** :code:`print_prog(program)` **to
4234
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4235
        after** :code:`clone`:
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4272 4273 4274

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4275 4276 4277 4278 4279 4280 4281 4282 4283
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4284
                            test_program = train_program.clone(for_test=True)
4285
                    print_prog(test_program)
J
Jiabin Yang 已提交
4286 4287 4288 4289 4290 4291 4292 4293 4294

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4317 4318
                    
                    def network():
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4333 4334 4335
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4336
                    # the test startup program is not used.
4337
                    with fluid.program_guard(test_program_2, startup_program_2):
4338
                        with fluid.unique_name.guard():
4339 4340
                            avg_loss = network()
                    print_prog(test_program_2)
4341 4342

        The two code snippets above will generate and print same programs.
4343
        """
4344 4345 4346 4347 4348

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4349
        pruned_origin_block_id_map = None
4350
        if for_test:
4351 4352 4353 4354 4355 4356 4357 4358 4359
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4360
        else:
4361
            p = Program()
G
gongweibao 已提交
4362 4363
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4364
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4365 4366 4367
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4368 4369

            p._current_role = self._current_role
4370
            p.__op_role_var = self.__op_role_var
4371
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4372

4373 4374
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4375
            p._sync_with_cpp()
4376

W
Wu Yi 已提交
4377
        p._copy_param_info_from(self)
4378
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4379
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4380
        return p
4381

4382
    def _prune(self, targets):
Y
yuyang18 已提交
4383 4384 4385 4386 4387 4388 4389 4390
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4391
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4392 4393 4394 4395
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4396
        """
4397
        return self._prune_with_input([], targets)
4398 4399

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4400
        """
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4411
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4412 4413 4414 4415 4416 4417
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4418 4419 4420 4421
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4422 4423
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4424 4425
        if not isinstance(targets, list):
            targets = [targets]
4426 4427 4428

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4429 4430 4431
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4432

4433 4434 4435 4436
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4437 4438 4439
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4440
                else:
4441 4442 4443
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4444 4445 4446 4447 4448 4449 4450 4451

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4468 4469 4470 4471 4472 4473 4474 4475
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4476

4477
        res = Program()
4478 4479 4480
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4481 4482 4483
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4484
        res._sync_with_cpp()
4485 4486 4487 4488 4489

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4490 4491
        return res

X
Xin Pan 已提交
4492
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4493
        """
F
fengjiayi 已提交
4494 4495 4496 4497 4498
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4499
        3. change the :code:`is_test`
Y
yuyang18 已提交
4500 4501 4502
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4503
        Args:
X
Xin Pan 已提交
4504 4505
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4506

Y
yuyang18 已提交
4507 4508 4509 4510 4511 4512
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4513
        res = Program()
4514
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4515 4516 4517 4518

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4519
        if prune_read_op:
4520 4521 4522 4523 4524 4525 4526 4527 4528
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4529
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4530 4531

        # change all `is_test` attributes to True
M
minqiyang 已提交
4532
        for i in six.moves.range(res.desc.num_blocks()):
4533
            block = res.desc.block(i)
M
minqiyang 已提交
4534
            for j in six.moves.range(block.op_size()):
4535 4536
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4537
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4538 4539 4540
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4541
        res._sync_with_cpp()
4542 4543
        return res

4544 4545
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4546
        """
J
Jiabin Yang 已提交
4547 4548 4549 4550
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4551

4552 4553
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4554

J
Jiabin Yang 已提交
4555
        Args:
Y
yuyang18 已提交
4556

J
Jiabin Yang 已提交
4557
            binary_str_type (str): the binary prootbuf string.
4558

J
Jiabin Yang 已提交
4559 4560
        Returns:
            Program: A deserialized Program.
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4583
        """
4584 4585
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4586
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4587
        p._sync_with_cpp()
4588
        return p
Y
Yu Yang 已提交
4589

4590
    @staticmethod
4591
    def _construct_from_desc(desc):
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4607 4608
    @property
    def random_seed(self):
Y
yuyang18 已提交
4609
        """
J
Jiabin Yang 已提交
4610
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4611 4612
        the random seed from random device.

J
Jiabin Yang 已提交
4613 4614 4615 4616
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4617

4618 4619 4620 4621 4622 4623 4624 4625

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4626
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4627 4628 4629
                print(random_seed)
                ## 0
                ## the default random seed is 0
4630 4631

                # Here we need to set random seed before we use fluid.layers.dropout
4632
                prog.random_seed = 1
4633 4634
                z_var = fluid.layers.dropout(x_var, 0.7)

4635
                print(prog.random_seed)
4636 4637
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4638
        """
D
dzhwinter 已提交
4639 4640
        return self._seed

Q
qiaolongfei 已提交
4641 4642
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4643
        """
4644 4645
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4646 4647 4648 4649
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4650

4651 4652 4653 4654 4655 4656 4657 4658 4659

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4660 4661


Y
yuyang18 已提交
4662
        """
Q
qiaolongfei 已提交
4663 4664
        return self.desc.num_blocks()

D
dzhwinter 已提交
4665 4666 4667
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4668 4669 4670
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4671 4672
        self._seed = seed

Y
Yu Yang 已提交
4673
    def __repr__(self):
4674
        return self.__str__()
4675

Y
Yu Yang 已提交
4676
    def global_block(self):
Y
yuyang18 已提交
4677
        """
J
Jiabin Yang 已提交
4678 4679
        **Notes**:
            **This API has no effect in Dygraph mode**
4680 4681 4682

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4683 4684
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4685

4686 4687 4688 4689 4690 4691 4692 4693 4694

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4695

Y
yuyang18 已提交
4696
        """
Y
Yu Yang 已提交
4697 4698
        return self.blocks[0]

Q
Qiao Longfei 已提交
4699
    def block(self, index):
Y
yuyang18 已提交
4700
        """
J
Jiabin Yang 已提交
4701 4702
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4703

4704 4705
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4706 4707
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4708

J
Jiabin Yang 已提交
4709 4710
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4711 4712 4713 4714 4715 4716 4717 4718 4719

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4720
        """
Q
Qiao Longfei 已提交
4721 4722
        return self.blocks[index]

Y
Yu Yang 已提交
4723
    def current_block(self):
Y
yuyang18 已提交
4724
        """
J
Jiabin Yang 已提交
4725 4726
        **Notes**:
            **This API has no effect in Dygraph mode**
4727

J
Jiabin Yang 已提交
4728 4729
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4730

J
Jiabin Yang 已提交
4731 4732
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4733

4734 4735 4736 4737 4738 4739 4740 4741
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4742
        """
Y
Yu Yang 已提交
4743 4744
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4745
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4746 4747 4748 4749 4750
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4751

Y
yuyang18 已提交
4752 4753 4754 4755 4756
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4757
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4758 4759 4760
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4761 4762 4763 4764
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4765
    def _rollback(self):
Y
yuyang18 已提交
4766 4767 4768 4769 4770
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4771 4772
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4773
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4784 4785 4786
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4787
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4788

W
Wu Yi 已提交
4789
    def _copy_param_info_from(self, other):
4790
        """
4791
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4792

Y
yuyang18 已提交
4793 4794 4795
        Notes: This is a very low level API. Users should not invoke it
        directly.

4796 4797 4798 4799 4800 4801 4802
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4803 4804 4805
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4806

W
Wu Yi 已提交
4807
        self.global_block()._copy_param_info_from(other.global_block())
4808

4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4820 4821 4822
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4823 4824
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4825
        self._parameters_on_pservers = other._parameters_on_pservers
4826
        self._endpoints = other._endpoints
4827
        self._ps_endpoint = other._ps_endpoint
4828 4829
        self._distributed_lookup_table = other._distributed_lookup_table

4830
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4831 4832
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4833

Y
yuyang18 已提交
4834 4835 4836
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4837 4838
        Args:
            other(Program): Other program
4839 4840 4841 4842
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4843 4844 4845 4846 4847

        Returns:
            None
        """
        if not isinstance(other, Program):
4848 4849 4850
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4851

4852 4853 4854 4855 4856
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4857 4858 4859

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4860 4861
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4862
            for var in list(block.vars.values()):
4863 4864 4865 4866 4867 4868 4869
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4870

4871
    def list_vars(self):
Y
yuyang18 已提交
4872
        """
J
Jiabin Yang 已提交
4873
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4874

J
Jiabin Yang 已提交
4875 4876
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4888
        """
4889
        for each_block in self.blocks:
4890
            for each_var in list(each_block.vars.values()):
4891 4892
                yield each_var

4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4951

4952
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4953
class Parameter(Variable):
4954
    """
4955
    Parameter is derived from Variable. A parameter is a persistable
4956
    Variable, and will be updated by optimizers after each iteration.
4957
    The training of a neural network is essentially the updating of
4958 4959
    its parameters.

4960
    Relative to a general Variable, a Parameter has several its own
4961 4962
    member variables:

4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4973 4974
    """

4975 4976 4977 4978 4979 4980
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4981 4982 4983 4984 4985
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4986
        if len(shape) == 0:
4987 4988
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4989 4990 4991

        for each in shape:
            if each < 0:
4992 4993 4994
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4995 4996

        Variable.__init__(
4997 4998 4999 5000 5001 5002 5003
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5004 5005 5006 5007
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5008 5009
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5010
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5011

5012 5013
        self.is_distributed = False

F
fengjiayi 已提交
5014
    def __str__(self):
5015
        return self._to_readable_code()
F
fengjiayi 已提交
5016

F
update  
fengjiayi 已提交
5017 5018 5019
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5020

F
update  
fengjiayi 已提交
5021 5022 5023 5024 5025 5026 5027 5028
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5029 5030 5031 5032 5033 5034 5035 5036 5037
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5038 5039 5040 5041 5042 5043
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5044
                               "do_model_average")
F
update  
fengjiayi 已提交
5045
            for attr_name in additional_attr:
5046 5047
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5048 5049
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5050 5051 5052 5053
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5054

5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

5115
        # self.block = default_main_program().global_block()
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
5146
            return 'Parameter: %s\n%s' % (self.name, str(tensor))
5147
        else:
5148
            return 'Parameter: %s, not initialized' % (self.name)
5149 5150 5151 5152

    __repr__ = __str__


Y
Yu Yang 已提交
5153
# program is a global instance.
Y
Yu Yang 已提交
5154 5155
_main_program_ = Program()
_startup_program_ = Program()
5156

5157

5158
def default_startup_program():
Y
Yu Yang 已提交
5159
    """
Y
yuyang18 已提交
5160 5161
    Get default/global startup program.

J
Jiabin Yang 已提交
5162 5163 5164
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5165 5166 5167
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5168
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5169

J
Jiabin Yang 已提交
5170
    Returns: current default startup :ref:`api_fluid_Program`
5171

J
Jiabin Yang 已提交
5172
    Returns type: :ref:`api_fluid_Program`
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5188
    """
Y
Yu Yang 已提交
5189
    return _startup_program_
5190

5191

5192
def default_main_program():
Y
Yu Yang 已提交
5193
    """
5194 5195 5196 5197 5198
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5199

5200 5201
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5202
    :code:`default_main_program` when the program is not specified.
5203

5204 5205
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5206
    Returns:
5207
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5208 5209 5210 5211 5212

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5213

5214
            # Sample Network:
5215 5216
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5236
            #print the number of blocks in the program, 1 in this case
5237
            print(fluid.default_main_program().num_blocks)
5238 5239

            #print the description of variable 'image'
5240
            print(fluid.default_main_program().blocks[0].var('image'))
5241

Y
Yu Yang 已提交
5242
    """
Y
Yu Yang 已提交
5243
    return _main_program_
Y
Yu Yang 已提交
5244 5245 5246 5247 5248


def switch_main_program(program):
    """
    Switch the main program to a new program.
5249

Y
Yu Yang 已提交
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5264
    Switch the startup program to a new program
Y
Yu Yang 已提交
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5277
@signature_safe_contextmanager
Y
Yu Yang 已提交
5278 5279
def program_guard(main_program, startup_program=None):
    """
5280 5281
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5282
    variables to the new main programs.
5283

G
guofei 已提交
5284 5285 5286 5287 5288 5289 5290
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5291
    Examples:
5292 5293 5294
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5295

5296 5297 5298
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5299
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5300
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5301 5302 5303

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5304

Y
Yu Yang 已提交
5305
    Examples:
5306
       .. code-block:: python
Y
yuyang18 已提交
5307

5308 5309 5310 5311 5312
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5313 5314
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5315
    """
5316 5317
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5318 5319
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5320 5321
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5322
        startup_program = switch_startup_program(startup_program)
5323 5324 5325 5326 5327 5328
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5329 5330


W
Wu Yi 已提交
5331
def _get_var(name, program=None):
X
xuwei06 已提交
5332
    """
Y
yuyang18 已提交
5333
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5334

X
xuwei06 已提交
5335 5336 5337
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5338
        If None, default_global_program() will be used.
X
xuwei06 已提交
5339 5340 5341 5342 5343 5344 5345

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5346
    assert isinstance(program, Program)
X
xuwei06 已提交
5347 5348

    return program.global_block().var(name)
5349 5350


S
rename  
sneaxiy 已提交
5351
@signature_safe_contextmanager
L
lujun 已提交
5352 5353 5354 5355
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5356
    core._switch_tracer(tracer)
M
minqiyang 已提交
5357

5358 5359 5360 5361 5362
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5363 5364


S
rename  
sneaxiy 已提交
5365
@signature_safe_contextmanager
L
lujun 已提交
5366 5367 5368 5369
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5370

5371 5372 5373 5374
    try:
        yield
    finally:
        _dygraph_current_expected_place_ = tmp_place
5375 5376 5377 5378 5379 5380 5381


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5382
    Please note, the type of custom operators can't have the same type
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
    pre_device = switch_device(device)
5454 5455 5456 5457
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value