internal_storage.py 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
Baibaifan 已提交
14 15 16 17 18 19 20 21 22 23

# The file has been adapted from fairscale file:
# https://github.com/facebookresearch/fairscale/blob/main/fairscale/nn/misc/param_bucket.py
# Git commit hash: 8acbec718f3c70a6b9785470bb9e05cd84fc3f8e
# We retain the following license from the original files:

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
24 25 26 27 28 29

import os
import time
import numpy as np

import paddle
B
Baibaifan 已提交
30
import paddle.fluid as fluid
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
from paddle.fluid import core
from ..meta_parallel.sharding.sharding_utils import Type, device_guard


class InternalStorage:
    """
    This is a basic class, which is responsible for consolidating the basic storage tensor.

    """

    # Support integration parameter tensor
    def __init__(self, size, dtype, device, convert_cpu=False):
        self._params = []
        self._param_ids = []
        self._fill = 0
        self._device = device
        self._dtype = dtype

        # The actual flat tensor
        size = [size] if isinstance(size, int) else size
        if convert_cpu:
            value = np.zeros(
                size,
                dtype=np.float16) if Type.fp16.value == dtype else np.zeros(
                    size, dtype=np.float32)
            self.buffer = core.VarBase(value=value, place=core.CPUPlace())
        else:
            self.buffer = paddle.zeros(size, dtype=dtype)

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    def to(self, device, dtype=None, keep_alignment=True):
        """
        Move the underlying buffer
        """
        assert self.buffer is not None, "Cannot move a collapsed bucket, please rebuild it"
        assert (dtype == Type.fp32.value or
                Type.fp16.value), "Conversion type is not supported now"

        dev_id = 0 if paddle.get_device() == "cpu" else int(paddle.get_device()
                                                            .split(":")[1])

        if self._device != device:
            tmp_buffer = self.buffer.cuda(
                dev_id) if device == "gpu" else self.buffer.cpu()
            for param in self._params:
                param.clear_gradient(False)
                param._gradient_set_empty(False)
            self.buffer.value().get_tensor()._clear()
            self.buffer = tmp_buffer
79
            self._device = device
80 81 82

        if dtype is not None:
            self.buffer = self.buffer.cast(dtype=dtype)
83
            self._dtype = dtype
84

85 86 87 88 89 90 91 92 93 94

class ParamStorage(InternalStorage):
    """
    This is a basic class to simplify the handling of parameter InternalStorages.
    """

    def __init__(self, size, dtype, device):
        super().__init__(size, dtype, device, convert_cpu=True)
        self.param2align = None

95 96 97 98 99 100 101 102 103 104
    def to(self, device, dtype=None, keep_alignment=True):
        """
        Move the underlying buffer
        """

        super().to(device, dtype)

        if keep_alignment:
            self._array_params()

B
Baibaifan 已提交
105
    @fluid.dygraph.no_grad
106
    def add_rank_params(self, trainable_params, param2align, convert_gpu=True):
107 108 109 110 111 112 113 114 115 116 117 118 119
        """
        Add new parameters to the InternalStorage. Params becomes a view of this InternalStorage buffer.
        """

        assert all([
            id(param) not in self._param_ids for param in trainable_params
        ]), "The same param cannot be checked in twice"
        assert self.buffer is not None

        self.param2align = param2align

        cpu_param_shape = list()
        for param in trainable_params:
120 121
            p_shape = self._add_param_as_view(param, param2align[param.name],
                                              convert_gpu)
122 123
            cpu_param_shape.append(p_shape)

124 125 126 127 128
        if convert_gpu:
            # buffer convert from cpu to cuda
            dev_id = int(paddle.get_device().split(":")[1])
            self.buffer = self.buffer.cuda(dev_id)

129 130 131 132 133 134 135 136
        self._fill = 0

        for idx, param in enumerate(trainable_params):
            self._convert_buffer(param, cpu_param_shape[idx],
                                 param2align[param.name])
            self._params.append(param)
            self._param_ids.append(id(param))

B
Baibaifan 已提交
137
    @fluid.dygraph.no_grad
138
    def _add_param_as_view(self, param, align, convert_gpu=True):
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

        assert (
            param.dtype == self.buffer.dtype
        ), "Different types for the InternalStorage and the param, cannot proceed: {} - {}".format(
            param.dtype, self.buffer.dtype)

        var_end = self._fill + np.prod(param.shape)
        offset = var_end + align
        assert offset <= np.prod(self.buffer.shape)

        p_shape = param.shape

        origin_state = param.stop_gradient
        param.stop_gradient = True
        param.flatten_()
        param.stop_gradient = origin_state

        # Copy the current param value
157 158
        dev_id = 0 if paddle.get_device() == "cpu" else int(paddle.get_device()
                                                            .split(":")[1])
159 160 161
        with device_guard(dev_id, "cpu"):
            tmp_var = core.VarBase(tensor=self.buffer._slice(self._fill,
                                                             var_end))
162 163 164 165 166 167
            if convert_gpu:
                param_cpu = param.cpu()
                param.value().get_tensor()._clear()
                tmp_var.set_value(param_cpu)
            else:
                tmp_var.set_value(param)
168 169 170 171

        self._fill = offset
        return p_shape

B
Baibaifan 已提交
172
    @fluid.dygraph.no_grad
173 174 175 176 177 178 179 180 181 182 183 184 185
    def _convert_buffer(self, param, p_shape, align):

        var_end = self._fill + np.prod(p_shape)
        offset = var_end + align
        assert offset <= np.prod(self.buffer.shape)

        # Convert the param value
        tmp_tensor = self.buffer._slice(self._fill, var_end)
        param.value().get_tensor()._share_data_with(tmp_tensor)
        param.value().get_tensor()._set_dims(p_shape)

        self._fill = offset

186 187 188 189 190 191 192 193 194 195 196 197
    @fluid.dygraph.no_grad
    def _array_params(self):
        """
        Given the parameters which have been registered previously, rebuild the whole InternalStorage.
        """
        assert len(self._params) > 0
        assert self.param2align is not None

        self._fill = 0
        for p in self._params:
            self._convert_buffer(p, p.shape, self.param2align[p.name])  # modify

198 199 200 201 202 203

class GradStorage(InternalStorage):
    """
    This is a basic class to simplify the handling of gradient InternalStorages
    """

204 205 206 207 208 209 210
    def __init__(self,
                 size,
                 dtype,
                 device,
                 destination,
                 parm2align,
                 convert_cpu=False):
211 212
        if isinstance(size, np.int64):
            size = size.tolist()
213
        super().__init__(size, dtype, device, convert_cpu)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

        self._max_size = size
        self._release = False

        self.params_checked_in = 0
        self.destination = destination
        self._parm2align = parm2align
        self.sent = False

    def reset_checked_in(self):
        """ Reset the counter of the parameter grads which have been checked in
        """
        self.params_checked_in = 0
        self.sent = False

    @property
    def all_checked_in(self):
        """ Judge all the expected gradient check-in happened """
        return len(self._params) == self.params_checked_in

    def can_add_grad_view(self, param, align):
        """ Is there enough InternalStorage to add this parameter gradient, and whether this param have already checked in.
        """
        return self._fill + np.prod(
            param.shape) + align <= self._max_size and id(
                param) not in self._param_ids

241 242 243 244 245 246 247 248 249 250 251 252
    def to(self, device, dtype=None, keep_alignment=True):
        """
        Move the underlying buffer
        """
        if self._release:
            self.rebuild()

        super().to(device, dtype)

        if keep_alignment:
            self._array_grads()

B
Baibaifan 已提交
253
    @fluid.dygraph.no_grad
254 255 256 257 258 259 260 261 262 263 264 265 266
    def add_grad(self, param, align):
        """
        Add a new parameter gradient to the InternalStorage. Param.grad becomes a view of this InternalStorage buffer.
        """

        assert id(
            param
        ) not in self._param_ids, "The same gradients cannot be checked in twice"

        self._add_grad_as_view(param, align)
        self._params.append(param)
        self._param_ids.append(id(param))

B
Baibaifan 已提交
267
    @fluid.dygraph.no_grad
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    def manumal_relase(self):
        """
        Release the buffer from InternalStorage. The InternalStorage will need to be rebuilt before use.
        """
        if not self._release:
            for p in self._params:
                if p.grad is not None:
                    p.clear_gradient(False)
                    p._gradient_set_empty(False)

            self.buffer = None
            self._fill = 0
            self.params_checked_in = 0
            self._release = True

B
Baibaifan 已提交
283
    @fluid.dygraph.no_grad
284 285 286 287 288 289
    def rebuild(self):
        """
        Given the parameter gradients which have been registered previously, rebuild the whole InternalStorage.
        """

        if self._release:
290
            self.buffer = paddle.zeros([self._max_size], dtype=self._dtype)
291 292 293 294 295 296

            for p in self._params:
                self._add_grad_as_view(p, self._parm2align[p.name])

            self._release = False

297 298 299 300 301 302 303 304 305 306
    @fluid.dygraph.no_grad
    def _array_grads(self):
        """
        Given the parameters gradients which have been registered previously, rebuild the whole InternalStorage.
        """
        if len(self._params) > 0:
            self._fill = 0
            for p in self._params:
                self._add_grad_as_view(p, self._parm2align[p.name])

B
Baibaifan 已提交
307
    @fluid.dygraph.no_grad
308 309 310 311 312 313 314 315 316 317 318
    def _add_grad_as_view(self, param, align):
        assert np.prod(
            self.buffer.shape
        ) > 0, "Cannot add a gradient to a released InternalStorage, please rebuild"
        assert param.dtype == self.buffer.dtype

        grad_end = self._fill + np.prod(param.shape)
        offset = grad_end + align
        assert offset <= np.prod(self.buffer.shape)

        # Copy the current grad value to InternalStorage
319 320 321 322 323 324 325 326 327 328 329 330 331
        dev_id = 0 if paddle.get_device() == "cpu" else int(paddle.get_device()
                                                            .split(":")[1])
        if self._device == "cpu":
            with device_guard(dev_id, self._device):
                tmp_var = core.VarBase(self.buffer._slice(self._fill, grad_end))
                param._copy_gradient_from(tmp_var)
                tmp_var.value().get_tensor()._clear()

        elif self._device == "gpu":
            tmp_var = core.VarBase(self.buffer._slice(self._fill, grad_end))
            param._copy_gradient_from(tmp_var)
            tmp_var.value().get_tensor()._clear()

332
        self._fill = offset