internal_storage.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Taken and modified for fairscale from:
#    https://github.com/facebookresearch/fairscale/blob/main/fairscale/nn/misc/param_bucket.py
#Commit: 8acbec718f3c70a6b9785470bb9e05cd84fc3f8e

import os
import time
import numpy as np

import paddle
from paddle.fluid import core
from ..meta_parallel.sharding.sharding_utils import Type, device_guard

# Set global device id
global dev_id
if core.is_compiled_with_cuda():
    dev_id = int(os.environ.get('FLAGS_selected_gpus', 0))
elif core.is_compiled_with_npu():
    dev_id = int(os.environ.get('FLAGS_selected_npus', 0))
else:
    raise ValueError("This device doesn't support.")


class InternalStorage:
    """
    This is a basic class, which is responsible for consolidating the basic storage tensor.

    """

    # Support integration parameter tensor
    def __init__(self, size, dtype, device, convert_cpu=False):
        self._params = []
        self._param_ids = []
        self._fill = 0
        self._device = device
        self._dtype = dtype

        # The actual flat tensor
        size = [size] if isinstance(size, int) else size
        if convert_cpu:
            value = np.zeros(
                size,
                dtype=np.float16) if Type.fp16.value == dtype else np.zeros(
                    size, dtype=np.float32)
            self.buffer = core.VarBase(value=value, place=core.CPUPlace())
        else:
            self.buffer = paddle.zeros(size, dtype=dtype)


class ParamStorage(InternalStorage):
    """
    This is a basic class to simplify the handling of parameter InternalStorages.
    """

    def __init__(self, size, dtype, device):
        super().__init__(size, dtype, device, convert_cpu=True)
        self.param2align = None

    @paddle.no_grad()
    def add_rank_params(self, trainable_params, param2align):
        """
        Add new parameters to the InternalStorage. Params becomes a view of this InternalStorage buffer.
        """

        assert all([
            id(param) not in self._param_ids for param in trainable_params
        ]), "The same param cannot be checked in twice"
        assert self.buffer is not None

        self.param2align = param2align

        cpu_param_shape = list()
        for param in trainable_params:
            p_shape = self._add_param_as_view(param, param2align[param.name])
            cpu_param_shape.append(p_shape)

        # buffer covert from cpu to cuda
        self.buffer = self.buffer.cuda(dev_id)
        self._fill = 0

        for idx, param in enumerate(trainable_params):
            self._convert_buffer(param, cpu_param_shape[idx],
                                 param2align[param.name])
            self._params.append(param)
            self._param_ids.append(id(param))

    @paddle.no_grad()
    def _add_param_as_view(self, param, align):

        assert (
            param.dtype == self.buffer.dtype
        ), "Different types for the InternalStorage and the param, cannot proceed: {} - {}".format(
            param.dtype, self.buffer.dtype)

        var_end = self._fill + np.prod(param.shape)
        offset = var_end + align
        assert offset <= np.prod(self.buffer.shape)

        p_shape = param.shape

        origin_state = param.stop_gradient
        param.stop_gradient = True
        param.flatten_()
        param.stop_gradient = origin_state

        # Copy the current param value
        with device_guard(dev_id, "cpu"):
            tmp_var = core.VarBase(tensor=self.buffer._slice(self._fill,
                                                             var_end))
            param_cpu = param.cpu()
            param.value().get_tensor()._clear()
            tmp_var.set_value(param_cpu)

        self._fill = offset
        return p_shape

    @paddle.no_grad()
    def _convert_buffer(self, param, p_shape, align):

        var_end = self._fill + np.prod(p_shape)
        offset = var_end + align
        assert offset <= np.prod(self.buffer.shape)

        # Convert the param value
        tmp_tensor = self.buffer._slice(self._fill, var_end)
        param.value().get_tensor()._share_data_with(tmp_tensor)
        param.value().get_tensor()._set_dims(p_shape)

        self._fill = offset


class GradStorage(InternalStorage):
    """
    This is a basic class to simplify the handling of gradient InternalStorages
    """

    def __init__(self, size, dtype, device, destination, parm2align):
        if isinstance(size, np.int64):
            size = size.tolist()
        super().__init__(size, dtype, device)

        self._max_size = size
        self._release = False

        self.params_checked_in = 0
        self.destination = destination
        self._parm2align = parm2align
        self.sent = False

    def reset_checked_in(self):
        """ Reset the counter of the parameter grads which have been checked in
        """
        self.params_checked_in = 0
        self.sent = False

    @property
    def all_checked_in(self):
        """ Judge all the expected gradient check-in happened """
        return len(self._params) == self.params_checked_in

    def can_add_grad_view(self, param, align):
        """ Is there enough InternalStorage to add this parameter gradient, and whether this param have already checked in.
        """
        return self._fill + np.prod(
            param.shape) + align <= self._max_size and id(
                param) not in self._param_ids

    @paddle.no_grad()
    def add_grad(self, param, align):
        """
        Add a new parameter gradient to the InternalStorage. Param.grad becomes a view of this InternalStorage buffer.
        """

        assert id(
            param
        ) not in self._param_ids, "The same gradients cannot be checked in twice"

        self._add_grad_as_view(param, align)
        self._params.append(param)
        self._param_ids.append(id(param))

    @paddle.no_grad()
    def manumal_relase(self):
        """
        Release the buffer from InternalStorage. The InternalStorage will need to be rebuilt before use.
        """
        if not self._release:
            for p in self._params:
                if p.grad is not None:
                    p.clear_gradient(False)
                    p._gradient_set_empty(False)

            self.buffer = None
            self._fill = 0
            self.params_checked_in = 0
            self._release = True

    @paddle.no_grad()
    def rebuild(self):
        """
        Given the parameter gradients which have been registered previously, rebuild the whole InternalStorage.
        """
        assert len(self._params) > 0

        if self._release:
            self.buffer = paddle.zeros(
                [self._max_size], dtype=self._params[0].dtype)

            for p in self._params:
                self._add_grad_as_view(p, self._parm2align[p.name])

            self._release = False

    @paddle.no_grad()
    def _add_grad_as_view(self, param, align):
        assert np.prod(
            self.buffer.shape
        ) > 0, "Cannot add a gradient to a released InternalStorage, please rebuild"
        assert param.dtype == self.buffer.dtype

        grad_end = self._fill + np.prod(param.shape)
        offset = grad_end + align
        assert offset <= np.prod(self.buffer.shape)

        # Copy the current grad value to InternalStorage
        assert self._device == "gpu"
        tmp_var = core.VarBase(self.buffer._slice(self._fill, grad_end))
        param._copy_gradient_from(tmp_var)
        tmp_var.value().get_tensor()._clear()
        self._fill = offset