distribute_transpiler.py 46.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18 19 20

import distributed_splitter as splitter
import framework
T
typhoonzero 已提交
21
from framework import Program, default_main_program, Variable, Parameter
22
from . import core
23 24 25 26

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
27

28 29
GLOBAL_BLOCK_IDX = 0

T
done  
typhoonzero 已提交
30

T
typhoonzero 已提交
31 32 33 34 35 36
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
37

T
typhoonzero 已提交
38 39
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
40 41


42
class UnionFind(object):
43
    """ Union-find data structure.
44

45
    Union-find is a data structure that keeps track of a set of elements partitioned
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


93 94 95 96
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
97 98 99 100 101
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
102
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
103 104
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
105

T
typhoonzero 已提交
106 107
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
108 109
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
110 111
        :return: A list of VarBlocks. Each VarBlock specifies a shard of
           the var.
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
130
        # update split_count after aligning
T
typhoonzero 已提交
131 132 133 134 135 136 137 138 139
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
140 141 142 143
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
T
typhoonzero 已提交
144
                  trainer_id,
T
done  
typhoonzero 已提交
145 146 147
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Q
tmp  
qiaolongfei 已提交
148 149
                  split_method=splitter.round_robin,
                  sync_mode=True):
T
done  
typhoonzero 已提交
150
        """
151 152
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
153
            to do parameter optimization. And the optimization graph will be put
154
            into a parameter server program.
T
done  
typhoonzero 已提交
155

156
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
157 158
            parameter servers.

T
typhoonzero 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
            Steps to transpile trainer:
            1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
            2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
            3. modify trainer program add split_op to each grad variable.
            4. append send_op to send splited variables to server and fetch
               params(splited blocks or origin param) from server.
            5. append concat_op to merge splited blocks to update local weights.

            Steps to transpile pserver:
            1. create new program for parameter server.
            2. create params and grad variables that assigned to current server instance.
            3. create a sub-block in the server side program
            4. append ops that should run on current server instance.
            5. add listen_and_serv op

T
done  
typhoonzero 已提交
174
            :param optimize_ops: op list of optimization, should be the
175
                                    return value of Optimizer.minimize
T
done  
typhoonzero 已提交
176
            :type optimize_ops: list
T
typhoonzero 已提交
177 178 179 180
            :param params_grads: list of tuple(weight, gradient)
            :type params_grads: list
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
T
typhoonzero 已提交
181
            :param program: program to transpile, default is default_main_program
T
typhoonzero 已提交
182
            :type program: Program
T
done  
typhoonzero 已提交
183 184
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
185 186 187 188 189
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
            :param split_method: A function to determin how to split variables
                to different servers equally.
            :type split_method: function
T
done  
typhoonzero 已提交
190
        """
T
typhoonzero 已提交
191
        assert (callable(split_method))
T
done  
typhoonzero 已提交
192 193
        if program is None:
            program = default_main_program()
194 195
        self.origin_program = program
        self.trainer_num = trainers
T
typhoonzero 已提交
196
        self.optimize_ops = optimize_ops
Q
tmp  
qiaolongfei 已提交
197
        self.sync_mode = sync_mode
T
typhoonzero 已提交
198 199 200 201
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
202
        pserver_endpoints = pservers.split(",")
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        self.pserver_endpoints = pserver_endpoints

        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
226

227 228
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
229 230 231 232 233 234 235 236
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != framework.grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
261 262
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
263 264
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
265
        grad_var_mapping = self._append_split_op(program, grad_blocks)
266 267 268 269
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
        # step3: Add gradients as send op inputs and parameters as send
        # op outputs.
T
typhoonzero 已提交
270
        send_inputs = []
T
typhoonzero 已提交
271
        send_outputs = []
T
typhoonzero 已提交
272 273 274 275 276 277
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
278 279
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
280
        eplist = split_method(send_inputs, pserver_endpoints)
281
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
282 283 284 285 286 287 288 289
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
290

T
typhoonzero 已提交
291
        rpc_client_var = program.global_block().create_var(
292
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
293
            persistable=True,
T
typhoonzero 已提交
294
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
295

296
        # create send_op
T
typhoonzero 已提交
297
        program.global_block().append_op(
T
typhoonzero 已提交
298 299
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
300 301
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
302
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
303
                   "epmap": eplist})
304
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
305
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
306 307
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
308
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
309
            program.global_block().append_op(
T
typhoonzero 已提交
310
                type="concat",
T
typhoonzero 已提交
311
                inputs={"X": splited_var},
T
typhoonzero 已提交
312
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
313
                attrs={"axis": 0})
T
typhoonzero 已提交
314

315 316 317 318 319 320
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
321 322
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
323 324
        self.origin_program.global_block().delete_ops(self.optimize_ops)
        self.origin_program.sync_with_cpp()
325
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
326 327
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
328 329 330 331

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
332
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
333 334 335 336 337 338
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
339
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
340 341 342 343 344 345 346 347
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
348 349 350 351 352 353

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
354 355 356 357 358 359 360 361 362
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
363 364
            if self.trainer_num > 1:
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
365 366 367 368 369 370 371 372 373
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
374

Q
qiaolongfei 已提交
375 376
        # step 3
        # each optimization op will has a optimize block
377 378
        optimize_block = None

T
typhoonzero 已提交
379
        # step 4
380
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
381 382 383
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
384
        # step 4.2
T
typhoonzero 已提交
385 386 387 388 389 390 391 392
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
        # step 4.3
        # Iterate through the ops, and if an op and the optimize ops
393
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
394
        # append it into the sub program.
T
typhoonzero 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
            if op.type == "scale":
                for in_name in op.input_arg_names:
                    if in_name.startswith("beta1_pow_acc") or\
                        in_name.startswith("beta2_pow_acc"):
                        global_ops.append(op)

        def __append_optimize_op__(op, block):
            if self._is_opt_op(op):
                self._append_pserver_ops(block, op, endpoint,
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

424
        # append lr decay ops to the child block if exists
425
        lr_decay_block = None
426 427
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
428
            lr_decay_block = pserver_program.create_block(GLOBAL_BLOCK_IDX)
429
            for _, op in enumerate(lr_ops):
430
                self._append_pserver_non_opt_ops(lr_decay_block, op)
431

T
typhoonzero 已提交
432
        # append op to the current block
433 434 435 436
        per_opt_block = None
        pre_block_idx = GLOBAL_BLOCK_IDX
        if lr_decay_block is not None:
            pre_block_idx = lr_decay_block.idx
T
typhoonzero 已提交
437
        for idx, opt_op in enumerate(opt_op_on_pserver):
438 439
            per_opt_block = pserver_program.create_block(pre_block_idx)
            if optimize_block is None:
Q
qiaolongfei 已提交
440
                # first optimize block
441
                optimize_block = per_opt_block
T
typhoonzero 已提交
442 443
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
444
                if ufind.is_connected(op, opt_op) and op not in global_ops:
T
typhoonzero 已提交
445 446 447
                    __append_optimize_op__(op, per_opt_block)

        # append global ops
448 449 450
        opt_state_block = None
        if global_ops:
            opt_state_block = pserver_program.create_block(per_opt_block.idx)
T
typhoonzero 已提交
451
        for glb_op in global_ops:
452
            __append_optimize_op__(glb_op, opt_state_block)
T
typhoonzero 已提交
453 454 455 456 457 458 459 460 461

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

462 463 464 465
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
466 467 468
            table_opt_block = self._create_table_optimize_block(
                pserver_index, pserver_program, opt_state_block or
                pserver_program.global_block())
469
            prefetch_block = self._create_prefetch_block(
470
                pserver_index, pserver_program, table_opt_block)
471 472 473 474 475 476 477 478 479

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
480 481 482 483 484 485 486 487
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
                "OptimizeBlock": optimize_block,
                "endpoint": endpoint,
488
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
489 490 491
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
                "grad_to_id": []
T
typhoonzero 已提交
492
            })
493

T
typhoonzero 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
518
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
                    program.global_block().delete_ops([op])
                    program.sync_with_cpp()
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
        table_grad_name = framework.grad_var_name(self.table_name)
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type=LOOKUP_TABLE_TYPE,
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
                                     append_block):
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
        param_var = _clone_var(
            pserver_program.global_block(),
            self.origin_program.global_block().vars[self.table_name])
        grad_var = _clone_var(
            pserver_program.global_block(),
            self.origin_program.global_block().vars[framework.grad_var_name(
                self.table_name)],
            persistable=False)

        # create grad vars in pserver program
        table_grad_var = self.table_param_grad[1]
        table_grad_list = [
            pserver_program.global_block().create_var(
                name="%s.trainer_%d.pserver_%d" %
                (table_grad_var.name, index, pserver_index),
                type=table_grad_var.type,
                shape=table_grad_var.shape,
                dtype=table_grad_var.dtype) for index in range(self.trainer_num)
        ]

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
        table_opt_block = pserver_program.create_block(append_block.idx)
        # only support sgd now
        assert table_opt_op.type == "sgd"

        # append sum op for table_grad_list
        table_opt_block.append_op(
            type="sum",
            inputs={"X": table_grad_list},
            outputs={"Out": [grad_var]})

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

742 743
        return table_opt_block

T
typhoonzero 已提交
744 745 746 747 748 749
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
750
        Create vars for each split.
T
typhoonzero 已提交
751 752
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
753
        :return: A dict mapping from original var name to each var split.
T
typhoonzero 已提交
754
        """
T
typhoonzero 已提交
755
        block_map = dict()
T
typhoonzero 已提交
756
        var_mapping = dict()
T
typhoonzero 已提交
757 758 759 760 761 762
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
763
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
764
            if len(splited) == 1:
T
typhoonzero 已提交
765 766 767 768 769 770 771 772 773
                if add_trainer_suffix:
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
774
                continue
T
typhoonzero 已提交
775 776

            var_mapping[varname] = []
T
typhoonzero 已提交
777 778 779 780
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
781

T
typhoonzero 已提交
782
            for i, block in enumerate(splited):
T
typhoonzero 已提交
783
                size = block[1]
T
typhoonzero 已提交
784 785 786 787
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
788 789 790 791 792 793 794
                new_var_name = ""
                if add_trainer_suffix:
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
795
                var = program.global_block().create_var(
T
typhoonzero 已提交
796 797
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
798
                    dtype=orig_var.dtype,
799
                    type=orig_var.type,
T
typhoonzero 已提交
800
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
801
                var_mapping[varname].append(var)
T
typhoonzero 已提交
802
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
803
        return var_mapping
T
done  
typhoonzero 已提交
804

805 806 807 808 809 810 811 812 813 814 815
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
816 817 818 819 820 821 822
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
823
            persistable=persistable)
T
done  
typhoonzero 已提交
824

T
typhoonzero 已提交
825
    def _append_split_op(self, program, gradblocks):
826
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
827
        add_suffix = False
828
        if self.trainer_num > 1:
T
typhoonzero 已提交
829
            add_suffix = True
T
typhoonzero 已提交
830
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
831
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
832
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
833 834
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
835
                continue
T
typhoonzero 已提交
836
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
837
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
838 839 840 841 842 843 844 845
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
846
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
847 848 849 850
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
T
typhoonzero 已提交
851
                    type="split_byref",
852 853 854 855 856 857 858
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
859
        return var_mapping
T
done  
typhoonzero 已提交
860

T
typhoonzero 已提交
861 862 863 864
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
865
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
888 889 890 891 892
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
893 894
        else:
            orig_var_name = varname
T
typhoonzero 已提交
895 896
        return orig_var_name

897 898
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
                            origin_program):
899
        program = optimize_block.program
T
typhoonzero 已提交
900
        pserver_block = program.global_block()
T
typhoonzero 已提交
901
        new_inputs = dict()
T
typhoonzero 已提交
902 903
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
904
        for key in opt_op.input_names:
T
typhoonzero 已提交
905 906 907
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
908
                    if same_or_split_var(
T
typhoonzero 已提交
909 910
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
911 912 913 914 915 916
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
917 918
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
919
                if self.trainer_num > 1:
T
typhoonzero 已提交
920
                    vars2merge = []
921
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
922 923 924 925
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

926
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
927 928 929
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
930
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
931 932 933 934 935
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
936
                            attrs={"scale": 1.0 / float(self.trainer_num)})
T
typhoonzero 已提交
937 938 939 940 941
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
942
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
943 944 945 946
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
947
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
948
                    name=param_block.name,
T
typhoonzero 已提交
949
                    persistable=True,
T
typhoonzero 已提交
950 951 952
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
953
            elif key == "LearningRate":
954
                # learning rate variable has already be created by non-optimize op,
955
                # don't create it once again.
956 957 958 959 960 961 962 963 964 965 966
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
967

T
typhoonzero 已提交
968
        for key in opt_op.input_names:
969 970
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
971
                continue
972
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
973 974 975 976
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
977
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
978 979 980 981 982
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
983

984
        # change output's ParamOut variable
985 986
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
987
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
988

989
        optimize_block.append_op(
T
typhoonzero 已提交
990 991
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
992
            outputs=outputs,
T
typhoonzero 已提交
993 994
            attrs=opt_op.attrs)

995 996
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
997
        # Append the ops for parameters that do not need to be optimized/updated
998 999
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1000 1001 1002 1003
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1004
            for var in varlist:
1005 1006
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1007 1008 1009 1010 1011
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1012 1013
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1014

1015 1016 1017 1018 1019
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1020
                program.global_block().clone_variable(var)
1021

1022
        optimize_block.append_op(
T
typhoonzero 已提交
1023
            type=opt_op.type,
T
typhoonzero 已提交
1024 1025
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1026 1027
            attrs=opt_op.attrs)

1028 1029 1030 1031
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1045 1046
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1047
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1048
        op2_output_names = op2.desc.output_arg_names()
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1068
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1069 1070
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1071 1072 1073 1074 1075 1076 1077
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1078
        if op.input("Param")[0] in param_names:
1079 1080 1081
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1082
                param = op.input("Param")[0]
T
typhoonzero 已提交
1083
                if same_or_split_var(n, param) and n != param:
1084 1085 1086
                    return True
            return False

T
typhoonzero 已提交
1087
    def _get_input_map_from_op(self, varmap, op):
1088
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1101
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1123
        block = self.origin_program.global_block()
1124 1125 1126 1127 1128
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1142 1143
                    # we only need to append op for once
                    break
1144
        return lr_ops