test_amp_api.py 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
import numpy as np
18
from amp_base_models import AmpTestBase
19 20

import paddle
21
import paddle.nn.functional as F
22
from paddle import nn
23
from paddle.static import amp
24 25 26


class TestAutoCast(AmpTestBase):
27 28
    def setUp(self):
        self._conv = paddle.nn.Conv2D(
29 30
            in_channels=1, out_channels=6, kernel_size=3, bias_attr=False
        )
31 32 33
        self._linear = paddle.nn.Linear(in_features=4, out_features=4)

    def test_amp_OD_level(self):
34
        with paddle.amp.auto_cast(level='OD'):
35
            out1 = self._conv(paddle.rand(shape=[1, 1, 6, 6], dtype='float32'))
36
            out2 = out1 + paddle.rand(shape=out1.shape, dtype='float16')
37
            out3 = self._linear(out2)
38 39 40 41 42 43

        self.assertEqual(out1.dtype, paddle.float16)
        self.assertEqual(out2.dtype, paddle.float32)
        self.assertEqual(out3.dtype, paddle.float32)


44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
class SimpleConvNet(nn.Layer):
    def __init__(self):
        super().__init__()
        self._conv = paddle.nn.Conv2D(
            in_channels=1, out_channels=6, kernel_size=3, bias_attr=False
        )
        self._linear = paddle.nn.Linear(in_features=4, out_features=4)

    def forward(self, x):
        out1 = self._conv(paddle.rand(shape=[1, 1, 6, 6], dtype='float32'))
        out2 = out1 + paddle.rand(shape=out1.shape, dtype='float16')
        out3 = self._linear(out2)
        return out3


59 60 61 62
class TestStaticDecorate(AmpTestBase):
    def check_results(
        self, use_amp, dtype, level, use_promote, expected_op_calls
    ):
63 64 65 66 67 68 69 70 71 72
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.utils.unique_name.guard():
            with paddle.static.program_guard(main_program, startup_program):
                model = SimpleConvNet()
                x = paddle.static.data(
                    name='input', shape=[None, 1, 6, 6], dtype='float32'
                )
                out = model(x)
                loss = paddle.mean(out)
L
LoneRanger 已提交
73
                optimizer = paddle.optimizer.Adadelta(learning_rate=0.001)
74 75 76 77 78 79 80 81 82 83
                optimizer = paddle.static.amp.decorate(
                    optimizer,
                    init_loss_scaling=128.0,
                    use_dynamic_loss_scaling=True,
                    level=level,
                )
                optimizer.minimize(loss)

        feed_vars = [x]
        fetch_vars = [loss]
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        self.assertEqual(main_program.num_blocks, 1)

        amp.debugging.collect_operator_stats(main_program)
        op_stats_list = amp.debugging._get_op_stats_list(main_program)

        self._check_op_calls(
            op_stats_list[0], expected_fp16_calls=expected_op_calls
        )

        place = paddle.CUDAPlace(0)
        exe = paddle.static.Executor(place)

        max_iters = 2
        x_fp32 = np.random.random(size=[1, 1, 6, 6]).astype("float32")
        losses_o1 = self.run_program(
            main_program,
            startup_program,
            optimizer,
            feed_vars,
            fetch_vars,
            place,
            exe,
            x_fp32,
            max_iters,
108
            dtype,
109 110 111
            level,
        )

112
    def test_static_amp_OD(self):
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        paddle.enable_static()
        expected_fp16_calls = {
            "conv2d": 1,
            "elementwise_add": 0,
            "matmul_v2": 1,
            "reduce_mean": 0,
        }
        self.check_results(
            True,
            'float16',
            'OD',
            use_promote=True,
            expected_op_calls=expected_fp16_calls,
        )
        paddle.disable_static()


130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
class TestGradScaler(AmpTestBase):
    def test_amp_grad_scaler(self):
        model = paddle.nn.Conv2D(3, 2, 3)
        optimizer = paddle.optimizer.SGD(
            learning_rate=0.01, parameters=model.parameters()
        )
        scaler = paddle.amp.GradScaler()
        data = paddle.rand([1, 3, 8, 8], dtype='float32')
        paddle.amp.debugging.enable_operator_stats_collection()
        with paddle.amp.auto_cast(
            custom_black_list=['conv2d'], dtype='bfloat16'
        ):
            out = model(data)
            loss = out.mean()
        scaled = scaler.scale(loss)
        scaled.backward()
        scaler.minimize(optimizer, scaled)
        optimizer.clear_grad()
        paddle.amp.debugging.disable_operator_stats_collection()
        op_list = paddle.fluid.core.get_low_precision_op_list()

        self.assertEqual(scaler._enable, False)
        self.assertEqual(scaler._use_dynamic_loss_scaling, False)
        self.assertTrue('scale' not in op_list)
        self.assertTrue('check_finite_and_unscale' not in op_list)


157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
class TestFp16Guard(AmpTestBase):
    def test_fp16_gurad(self):
        paddle.enable_static()

        def run_example_code():
            place = paddle.CUDAPlace(0)
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()

            exe = paddle.static.Executor(place)

            fetch_vars = []
            # 1) Use fp16_guard to control the range of fp16 kernels used.
            with paddle.static.program_guard(main_program, startup_program):
                with paddle.static.amp.fp16_guard():
                    data = paddle.static.data(
                        name='X', shape=[None, 1, 28, 28], dtype='float32'
                    )
                    conv2d = paddle.static.nn.conv2d(
                        input=data, num_filters=6, filter_size=3
                    )
                    bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")

                pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                hidden = paddle.static.nn.fc(pool, size=10)
                loss = paddle.mean(hidden)
                fetch_vars = [loss]
                # 2) Create the optimizer and set `multi_precision` to True.
                # Setting `multi_precision` to True can avoid the poor accuracy
                # or the slow convergence in a way.
                optimizer = paddle.optimizer.Momentum(
                    learning_rate=0.01, multi_precision=True
                )
                # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                amp_list = paddle.static.amp.CustomOpLists(
                    custom_black_list=['pool2d']
                )
                # 4) The entry of Paddle AMP.
                # Enable pure fp16 training by setting `use_pure_fp16` to True.
                optimizer = paddle.static.amp.decorate(
                    optimizer,
                    amp_list,
                    init_loss_scaling=128.0,
                    use_dynamic_loss_scaling=True,
                    use_pure_fp16=True,
                )
                # If you don't use the default_startup_program(), you sholud pass
                # your defined `startup_program` into `minimize`.
                optimizer.minimize(loss)

            exe.run(startup_program)
            # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
            # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
            optimizer.amp_init(place, scope=paddle.static.global_scope())

            x_fp32 = np.random.random(size=[1, 1, 28, 28]).astype("float32")
            (loss_data,) = exe.run(
                main_program, feed={"X": x_fp32}, fetch_list=[loss.name]
            )

            self.assertEqual(
                paddle.static.global_scope()
                .find_var("conv2d_0.b_0")
                .get_tensor()
                ._dtype(),
                paddle.float16,
            )
            self.assertEqual(
                paddle.static.global_scope()
                .find_var("fc_0.b_0")
                .get_tensor()
                ._dtype(),
                paddle.float32,
            )

        if (
            paddle.is_compiled_with_cuda()
            and len(paddle.static.cuda_places()) > 0
        ):
            run_example_code()
        paddle.disable_static()


240 241
if __name__ == '__main__':
    unittest.main()