test_amp_api.py 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17 18
import numpy as np
from amp_base_models import AmpTestBase, build_conv_model
19 20

import paddle
21
from paddle.static import amp
22 23 24


class TestAutoCast(AmpTestBase):
25 26
    def setUp(self):
        self._conv = paddle.nn.Conv2D(
27 28
            in_channels=1, out_channels=6, kernel_size=3, bias_attr=False
        )
29 30 31
        self._linear = paddle.nn.Linear(in_features=4, out_features=4)

    def test_amp_OD_level(self):
32
        with paddle.amp.auto_cast(level='OD'):
33
            out1 = self._conv(paddle.rand(shape=[1, 1, 6, 6], dtype='float32'))
34
            out2 = out1 + paddle.rand(shape=out1.shape, dtype='float16')
35
            out3 = self._linear(out2)
36 37 38 39 40 41

        self.assertEqual(out1.dtype, paddle.float16)
        self.assertEqual(out2.dtype, paddle.float32)
        self.assertEqual(out3.dtype, paddle.float32)


42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
class TestStaticDecorate(AmpTestBase):
    def check_results(
        self, use_amp, dtype, level, use_promote, expected_op_calls
    ):
        (
            main_program,
            startup_program,
            optimizer,
            feed_vars,
            fetch_vars,
        ) = build_conv_model(use_amp, dtype, level, use_promote)
        self.assertEqual(main_program.num_blocks, 1)
        optimizer = paddle.fluid.optimizer.Adadelta(learning_rate=0.001)
        optimizer = paddle.static.amp.decorate(
            optimizer,
            init_loss_scaling=128.0,
            use_dynamic_loss_scaling=True,
            level=level,
        )

        amp.debugging.collect_operator_stats(main_program)
        op_stats_list = amp.debugging._get_op_stats_list(main_program)

        self._check_op_calls(
            op_stats_list[0], expected_fp16_calls=expected_op_calls
        )

        place = paddle.CUDAPlace(0)
        exe = paddle.static.Executor(place)

        max_iters = 2
        x_fp32 = np.random.random(size=[1, 1, 6, 6]).astype("float32")
        losses_o1 = self.run_program(
            main_program,
            startup_program,
            optimizer,
            feed_vars,
            fetch_vars,
            place,
            exe,
            x_fp32,
            max_iters,
            level,
        )

    def test_static_amp_o1(self):
        paddle.enable_static()
        expected_fp16_calls = {
            "conv2d": 1,
            "elementwise_add": 0,
            "relu": 0,
            "matmul_v2": 1,
            "softmax": 0,
            "reduce_mean": 0,
            "adamw": 0,
        }
        self.check_results(
            True,
            'float16',
            'OD',
            use_promote=True,
            expected_op_calls=expected_fp16_calls,
        )
        paddle.disable_static()


108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
class TestGradScaler(AmpTestBase):
    def test_amp_grad_scaler(self):
        model = paddle.nn.Conv2D(3, 2, 3)
        optimizer = paddle.optimizer.SGD(
            learning_rate=0.01, parameters=model.parameters()
        )
        scaler = paddle.amp.GradScaler()
        data = paddle.rand([1, 3, 8, 8], dtype='float32')
        paddle.amp.debugging.enable_operator_stats_collection()
        with paddle.amp.auto_cast(
            custom_black_list=['conv2d'], dtype='bfloat16'
        ):
            out = model(data)
            loss = out.mean()
        scaled = scaler.scale(loss)
        scaled.backward()
        scaler.minimize(optimizer, scaled)
        optimizer.clear_grad()
        paddle.amp.debugging.disable_operator_stats_collection()
        op_list = paddle.fluid.core.get_low_precision_op_list()

        self.assertEqual(scaler._enable, False)
        self.assertEqual(scaler._use_dynamic_loss_scaling, False)
        self.assertTrue('scale' not in op_list)
        self.assertTrue('check_finite_and_unscale' not in op_list)


if __name__ == '__main__':
    unittest.main()