gradient_checker.py 30.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
Jiawei Wang 已提交
14
"""This is the lib for gradient checker unittest."""
15

16
from collections.abc import Sequence
17 18
from itertools import product

19 20 21
import numpy as np

import paddle
22 23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.backward import _append_grad_suffix_, _as_list
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

def _product(t):
    if isinstance(t, int):
        return t
    else:
        return np.product(t)


def dtype_to_np_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return np.float32
    elif dtype == core.VarDesc.VarType.FP64:
        return np.float64
    elif dtype == core.VarDesc.VarType.FP16:
        return np.float16
    else:
        raise ValueError("Not supported data type " + str(dtype))


def _get_item(t, i, np_dtype):
    if np_dtype == np.float16:
        np_t = np.array(t).astype(np.float16)
        np_t = np_t.flatten()
        return np_t[i]
    elif np_dtype == np.float32:
        return t._get_float_element(i)
    elif np_dtype == np.float64:
        return t._get_double_element(i)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))


58
def _set_item(t, i, e, np_dtype, place):
59 60 61 62 63
    if np_dtype == np.float16:
        np_t = np.array(t).astype(np.float16)
        shape = np_t.shape
        np_t = np_t.flatten()
        np_t[i] = e
64
        np_t = np_t.reshape(shape)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        t.set(np_t, place)
    elif np_dtype == np.float32:
        t._set_float_element(i, e)
    elif np_dtype == np.float64:
        t._set_double_element(i, e)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))


def set_var_in_scope(scope, place, name, value, recursive_seq_len=None):
    t = scope.var(name).get_tensor()
    t.set(value, place)
    if recursive_seq_len:
        t.set_recursive_sequence_lengths(recursive_seq_len)
    return t


Q
qingqing01 已提交
82 83 84 85
def var_to_np_array_in_scope(scope, place, name):
    return np.array(scope.var(name).get_tensor())


86 87 88
def make_jacobian(x, y_size, np_dtype):
    if isinstance(x, fluid.framework.Variable):
        return np.zeros((_product(x.shape), y_size), dtype=np_dtype)
89
    elif isinstance(x, Sequence):
90
        jacobians = list(
91 92 93 94 95
            filter(
                lambda t: t is not None,
                (make_jacobian(item, y_size, np_dtype) for item in x),
            )
        )
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        return jacobians
    else:
        None


def _compute_numerical_jacobian(program, x, y, place, scope, delta):
    """Computes the numeric Jacobian for dy/dx.

    Computes the numeric Jacobian by slightly perturbing the inputs and
    measuring the differences on the output.

    Args:
        program (Program): the network program.
        x (Variable): the input variables.
        y (list[Variable]): the output variables.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        scope (Scope): the scope used to run program.
        delta: the amount of perturbation we give to the input

    Returns:
        A list of 2-D numpy array, the list length is len(y).
        Each 2-D numpy array represents the Jacobian for dy_i/dx.
        It has "x_size" rows and "y_size" columns
        where "x_size" is the number of elements in x and
        "y_size" is the number of elements in each y_i.
    """
    if not isinstance(x, fluid.framework.Variable):
        raise TypeError('x is not Variable')

    # To compute the jacobian, treat x and y as one-dimensional vectors.
    y = _as_list(y)
    exe = fluid.Executor(place)

    def run():
        y_res = exe.run(program, scope=scope, fetch_list=y)
        return [yi.flatten() for yi in y_res]

    x_name = x.name
    x_shape = x.shape
    x_size = _product(x_shape)
    x_t = scope.find_var(x_name).get_tensor()

    np_type = dtype_to_np_dtype(x.dtype)
    jacobian = [make_jacobian(x, _product(yi.shape), np_type) for yi in y]

141
    for i in range(x_size):
142 143
        orig = _get_item(x_t, i, np_type)
        x_pos = orig + delta
144
        _set_item(x_t, i, x_pos, np_type, place)
145 146 147
        y_pos = run()

        x_neg = orig - delta
148
        _set_item(x_t, i, x_neg, np_type, place)
149 150
        y_neg = run()

151
        _set_item(x_t, i, orig, np_type, place)
152

153
        for j in range(len(y)):
154
            jacobian[j][i, :] = (y_pos[j] - y_neg[j]) / delta / 2.0
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    return jacobian


def _compute_analytical_jacobian(program, x, y, place, scope):
    """Computes the analytical Jacobian for dy/dx.

    Args:
        program (Program): a Program with forward pass.
        x (Variable|list[Variable]): a variable or list of variable
        y (Variable): the target variable.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        scope (Scope): the scope used to run program.

    Returns:
        A list of 2-D numpy array. The list length is len(x).
        Each 2-D numpy array represents the Jacobian for dy/dx_i.
        It has "xi_size" rows and "dy_size" columns
        where "x_size" is the number of elements in x_i and
        "dy_size" is the number of elements in y.
    """
    if not isinstance(y, fluid.framework.Variable):
        raise TypeError('y is not Variable')

    dy_name = _append_grad_suffix_(y.name)

    np_type = dtype_to_np_dtype(y.dtype)
    # create dy Variable in Program
183 184 185
    dy = program.global_block().create_var(
        name=dy_name, shape=y.shape, dtype=np_type, persistable=True
    )
186
    # append backward
187
    dx = fluid.gradients(y, x, dy)
188 189 190 191 192 193 194 195 196 197 198 199

    # init dy tensor in scope
    value = np.zeros(y.shape, dtype=np_type)
    dy_t = set_var_in_scope(scope, place, dy_name, value)

    exe = fluid.Executor(place)

    y_size = _product(y.shape)

    x = _as_list(x)
    jacobian = make_jacobian(x, y_size, np_type)

200 201 202 203 204
    # filter None in dx for DX/DY may be None in kernel
    # only fetch not None dx in exe.run
    filted = [(i, dxi) for i, dxi in enumerate(dx) if dxi is not None]
    filted_idx, filted_dx = zip(*filted)

205
    for i in range(y_size):
206
        _set_item(dy_t, i, 1, np_type, place)
207

208
        dx_res = exe.run(program, scope=scope, fetch_list=filted_dx)
209

210
        for j in range(len(filted_dx)):
211
            dx_idx = filted_idx[j]
Q
qingqing01 已提交
212
            if dx_res[j] is not None:
213
                jacobian[dx_idx][:, i] = dx_res[j].flatten()
Q
qingqing01 已提交
214
            else:
215 216 217
                jacobian[dx_idx][:, i] = np.zeros(
                    dx[dx_idx].shape, dtype=np_type
                ).flatten()
Q
qingqing01 已提交
218

219
        _set_item(dy_t, i, 0, np_type, place)
220 221 222 223

    return jacobian


224 225 226 227 228 229 230 231 232 233 234
def grad_check(
    x,
    y,
    x_init=None,
    place=None,
    program=None,
    eps=1e-6,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    """
    Check numerical and analytical gradients for dy/dx.
    Each Jacobian gradients is a 2-D array with shape [xi_size, yi_size].

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    y = _as_list(y)
Q
qingqing01 已提交
263

264 265 266
    for v in x:
        v.stop_gradient = False
        v.persistable = True
267 268 269
    for u in y:
        u.stop_gradient = False
        u.persistable = True
270 271 272 273 274 275 276 277 278 279 280 281 282 283
    if place is None:
        place = fluid.CPUPlace()
    if program is None:
        program = fluid.default_main_program()

    # init variable in strtup program
    scope = fluid.executor.global_scope()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    x_init = _as_list(x_init)
    # init inputs if x_init is not None
    if x_init:
        if len(x_init) != len(x):
284 285 286 287
            raise ValueError(
                'len(x_init) (=%d) is not the same'
                ' as len(x) (= %d)' % (len(x_init), len(x))
            )
288 289 290 291 292 293 294 295 296 297 298 299 300
        # init variable in main program
        for var, arr in zip(x, x_init):
            assert var.shape == arr.shape
        feeds = {k.name: v for k, v in zip(x, x_init)}
        exe.run(program, feed=feeds, scope=scope)

    # [x_idx, y_idx]
    numerical = [
        _compute_numerical_jacobian(program, xi, y, place, scope, eps)
        for xi in x
    ]

    # [y_idx, x_idx]
Q
qingqing01 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    analytical = []
    for yi in y:
        prog = program.clone()

        clone_x = []
        clone_y = None
        for b in prog.blocks:
            if b.has_var(yi.name):
                clone_y = b.var(yi.name)
                break
        for xi in x:
            for b in prog.blocks:
                if b.has_var(xi.name):
                    clone_x.append(b.var(xi.name))
                    break
        analytical.append(
317 318
            _compute_analytical_jacobian(prog, clone_x, clone_y, place, scope)
        )
319

320
    for i, (x_idx, y_idx) in enumerate(
321 322
        product(*[range(len(x)), range(len(y))])
    ):
323 324 325
        a = analytical[y_idx][x_idx]
        n = numerical[x_idx][y_idx]
        if not np.allclose(a, n, rtol, atol):
326 327 328 329 330 331
            msg = (
                'Jacobian mismatch for output %s '
                'with respect to input %s on %s,\n'
                'numerical:%s\nanalytical:%s\n'
                % (y[y_idx].name, x[x_idx].name, str(place), n, a)
            )
332 333 334 335
            return fail_test(msg)
    return True


336 337 338 339 340 341 342 343 344 345 346 347
def double_grad_check(
    x,
    y,
    x_init=None,
    y_grads=None,
    place=None,
    program=None,
    eps=1e-6,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    """
    Check gradients of gradients. This function will append backward to the
    program before second order gradient check.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """
    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
374 375 376
    for u in y:
        u.stop_gradient = False
        u.persistable = True
377 378 379 380 381 382 383

    if program is None:
        program = fluid.default_main_program()

    if y_grads is None:
        scope = fluid.executor.global_scope()
        y_grads = []
Q
qingqing01 已提交
384
        y_grads_init = []
385 386 387
        for yi in y:
            dyi_name = _append_grad_suffix_(yi.name)
            np_type = dtype_to_np_dtype(yi.dtype)
388 389 390
            dy = program.global_block().create_var(
                name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
            )
391 392 393 394
            dy.stop_gradient = False
            v = np.random.random(size=yi.shape).astype(np_type)
            set_var_in_scope(scope, place, dyi_name, v)
            y_grads.append(dy)
Q
qingqing01 已提交
395
            y_grads_init.append(v)
396 397
    else:
        y_grads = _as_list(y_grads)
Q
qingqing01 已提交
398 399 400
        y_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name) for v in y_grads
        ]
401 402

    # append first order grads
403
    target_grads = fluid.gradients(y, x, y_grads)
Q
qingqing01 已提交
404 405 406 407 408 409 410

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init = _as_list(x_init)
    x_init += y_grads_init

411
    grad_check(x, target_grads, x_init, place, program, eps, atol, rtol)
412 413


414
# TODO(jiabin): We currently support only triple grad check here, extend this to support
415 416 417 418
# higher order differenciation later.


# check triple grad and two outputs of the triple Kernel
419 420 421 422 423 424 425 426 427 428 429 430 431
def triple_grad_check(
    x,
    y,
    x_init=None,
    y_grads=None,
    x_grads_grads=None,
    place=None,
    program=None,
    eps=1e-6,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    """
    Check triple gradients. This function will append backward to the
    program before third order gradient check.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y.
        x_grads_grads (numpy.array|list[numpy.array]|None): the gradients with respect to your input.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """
    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
459 460 461
    for u in y:
        u.stop_gradient = False
        u.persistable = True
462 463 464 465 466 467 468 469 470 471 472

    if program is None:
        program = fluid.default_main_program()

    if y_grads is None:
        scope = fluid.executor.global_scope()
        y_grads = []
        y_grads_init = []
        for yi in y:
            dyi_name = _append_grad_suffix_(yi.name)
            np_type = dtype_to_np_dtype(yi.dtype)
473 474 475
            dy = program.global_block().create_var(
                name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
            )
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
            dy.stop_gradient = False
            v = np.random.random(size=yi.shape).astype(np_type)
            set_var_in_scope(scope, place, dyi_name, v)
            y_grads.append(dy)
            y_grads_init.append(v)
    else:
        y_grads = _as_list(y_grads)
        y_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name) for v in y_grads
        ]

    # append first order grads
    target_grads = fluid.gradients(y, x, y_grads)

    if x_grads_grads is None:
        scope = fluid.executor.global_scope()
        x_grads_grads = []
        x_grads_grads_init = []
        for dxi in target_grads:
            ddxi_name = _append_grad_suffix_(dxi.name)
            np_type = dtype_to_np_dtype(dxi.dtype)
497 498 499
            ddx = program.global_block().create_var(
                name=ddxi_name, shape=dxi.shape, dtype=np_type, persistable=True
            )
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
            ddx.stop_gradient = False
            v = np.random.random(size=dxi.shape).astype(np_type)
            set_var_in_scope(scope, place, ddxi_name, v)
            x_grads_grads.append(ddx)
            x_grads_grads_init.append(v)
    else:
        x_grads_grads = _as_list(x_grads_grads)
        x_grads_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name)
            for v in x_grads_grads
        ]
    x += y_grads
    x_init = _as_list(x_init)
    x_init += y_grads_init

515 516 517 518
    # append second order grads
    target_grads_grads = fluid.gradients(target_grads, x, x_grads_grads)

    # filter None in target_grads_grads for Dy/Dx may be None in kernel
519 520 521
    filted = [
        (i, dyi) for i, dyi in enumerate(target_grads_grads) if dyi is not None
    ]
522 523
    filted_idx, filted_target_grads_grads = zip(*filted)

524 525 526 527
    x += x_grads_grads
    x_init += x_grads_grads_init

    # x <=> [x, dout, ddx]
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
    grad_check(
        x=x,
        y=filted_target_grads_grads,
        x_init=x_init,
        place=place,
        program=program,
        eps=eps,
        atol=atol,
        rtol=rtol,
    )


def get_static_double_grad(
    x, y, x_init=None, dy_init=None, place=None, program=None
):
543 544 545 546 547 548 549 550 551
    """
    Get Double Grad result of static graph.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
552 553
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
554 555 556 557
    Returns:
        A list of numpy array that stores second derivative result calulated by static graph.
    """

558 559
    if program is None:
        program = fluid.default_main_program()
560 561
    scope = fluid.executor.global_scope()
    y_grads = []
562
    for i in range(len(y)):
563 564 565
        yi = y[i]
        dyi_name = _append_grad_suffix_(yi.name)
        np_type = dtype_to_np_dtype(yi.dtype)
566 567 568
        dy = program.global_block().create_var(
            name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
        )
569 570 571 572 573 574 575 576 577 578 579
        dy.stop_gradient = False
        set_var_in_scope(scope, place, dyi_name, dy_init[i])
        y_grads.append(dy)

    # append first order grads
    dx = fluid.gradients(y, x, y_grads)

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init += dy_init
580 581 582 583

    # filter None in dx for DX/DY may be None in kernel
    filted_dx = [dxi for dxi in dx if dxi is not None]
    y = filted_dx
584 585 586 587 588 589 590 591

    # check input arguments
    x = _as_list(x)
    y = _as_list(y)

    for v in x:
        v.stop_gradient = False
        v.persistable = True
592 593 594
    for u in y:
        u.stop_gradient = False
        u.persistable = True
595 596 597 598 599 600 601 602 603 604 605 606 607 608
    if place is None:
        place = fluid.CPUPlace()
    if program is None:
        program = fluid.default_main_program()

    # init variable in strtup program
    scope = fluid.executor.global_scope()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    x_init = _as_list(x_init)
    # init inputs if x_init is not None
    if x_init:
        if len(x_init) != len(x):
609 610 611 612
            raise ValueError(
                'len(x_init) (=%d) is not the same'
                ' as len(x) (= %d)' % (len(x_init), len(x))
            )
613 614 615 616 617 618 619 620 621 622 623
        # init variable in main program
        for var, arr in zip(x, x_init):
            assert var.shape == arr.shape
        feeds = {k.name: v for k, v in zip(x, x_init)}
        exe.run(program, feed=feeds, scope=scope)

    dys = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        dy_name = _append_grad_suffix_(yi.name)
        # create dy Variable in Program
624 625 626
        dy = program.global_block().create_var(
            name=dy_name, shape=yi.shape, dtype=np_type, persistable=True
        )
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
        # init dy tensor in scope
        value = np.ones(yi.shape, dtype=np_type)
        dy_t = set_var_in_scope(scope, place, dy_name, value)
        dys.append(dy)

    # append second order backward
    ddx = fluid.gradients(y, x, dys)
    exe = fluid.Executor(place)

    # filter None in dx for DX/DY may be None in kernel
    # only fetch not None dx in exe.run
    filted = [(i, dxi) for i, dxi in enumerate(ddx) if dxi is not None]
    filted_idx, filted_ddx = zip(*filted)
    ddx_res = exe.run(program, scope=scope, fetch_list=filted_ddx)

    return ddx_res


645 646 647
def get_eager_double_grad(
    func, x_init=None, dy_init=None, place=None, return_mid_result=False
):
648 649 650 651 652 653 654
    """
    Get Double Grad result of dygraph.

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
655
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
656
        return_mid_result (bool): A flag that controls the return content.
657
    Returns:
658
        If 'return_mid_result' set True.
659 660
        the second order derivative and the inputs of second order derivative's calculation
        will be returned for higher order derivative's calculation.
661
        If 'return_mid_result' set False.
662
        A list of numpy array that stores second derivative result calulated by dygraph.
663
    """
664 665 666 667
    if isinstance(place, fluid.CPUPlace):
        paddle.set_device("cpu")
    if isinstance(place, fluid.CUDAPlace):
        paddle.set_device("gpu")
668 669 670 671 672 673 674 675 676 677 678 679
    inputs = []
    dys = []
    for x in x_init:
        input_tensor = paddle.to_tensor(x)
        input_tensor.stop_gradient = False
        inputs.append(input_tensor)
    for dy in dy_init:
        dy_tensor = paddle.to_tensor(dy)
        dy_tensor.stop_gradient = False
        dys.append(dy_tensor)
    # calculate first derivative
    outputs = func(inputs)
680 681 682 683 684 685 686
    d_inputs = paddle.grad(
        outputs=outputs,
        inputs=inputs,
        grad_outputs=dys,
        create_graph=True,
        allow_unused=True,
    )
687
    d_inputs = [d_input for d_input in d_inputs if d_input is not None]
688 689 690 691

    # calcluate second derivative
    inputs = inputs + dys
    ddys = []
692 693 694 695 696
    if return_mid_result:
        create_graph = True
    else:
        create_graph = False

697 698 699 700 701
    for d_input in d_inputs:
        d_input.stop_gradient = False
        ddy = paddle.ones(shape=d_input.shape, dtype=d_input.dtype)
        ddy.stop_gradient = False
        ddys.append(ddy)
702

703 704 705 706 707 708 709
    dd_inputs = paddle.grad(
        outputs=d_inputs,
        inputs=inputs,
        grad_outputs=ddys,
        create_graph=create_graph,
        allow_unused=True,
    )
710

711
    if return_mid_result:
712 713 714
        return [
            dd_input for dd_input in dd_inputs if dd_input is not None
        ], inputs + ddys
715
    else:
716 717 718
        return [
            dd_input.numpy() for dd_input in dd_inputs if dd_input is not None
        ]
719 720


721 722 723 724 725 726 727 728 729 730
def double_grad_check_for_dygraph(
    func,
    x,
    y,
    x_init=None,
    place=None,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
731
    """
732 733
    Check second order gradients of dygraph. This function will compare the
    second order gradients of dygraph and second order gradients of static graph
734
    to validate dygraph's correctness
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
759 760 761
    for u in y:
        u.stop_gradient = False
        u.persistable = True
762 763 764 765 766 767 768 769 770
    y_grads_init = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        v = np.random.random(size=yi.shape).astype(np_type)
        y_grads_init.append(v)

    x_init = _as_list(x_init)

    paddle.disable_static()
771
    eager_double_grad = get_eager_double_grad(func, x_init, y_grads_init, place)
772 773
    paddle.enable_static()

774 775 776
    static_double_grad = get_static_double_grad(
        x, y, x_init, y_grads_init, place
    )
777

778
    if len(static_double_grad) != len(eager_double_grad):
779 780
        msg = (
            "The output grad tensor's number of static graph is different with dygraph, "
781
            "please check the python api unit test used."
782
        )
783 784
        raise RuntimeError(msg)

785
    for i in range(len(static_double_grad)):
786 787 788 789 790 791 792
        if not np.allclose(
            static_double_grad[i], eager_double_grad[i], rtol, atol
        ):
            msg = (
                'Check eager double result fail. Mismatch between static_graph double grad '
                'and eager double grad on %s, the output double grad tensor\'s index is : %d \n'
                'static:%s\n eager:%s\n'
793
                % (str(place), i, static_double_grad[i], eager_double_grad[i])
794
            )
795
            return fail_test(msg)
796 797


798 799 800
def get_static_triple_grad(
    x, y, x_init=None, dy_init=None, place=None, program=None
):
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    """
    Get Triple Grad result of static graph.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
    Returns:
        A list of numpy array that stores third derivative result calulated by static graph.
    """
    if program is None:
        program = fluid.default_main_program()
    scope = fluid.executor.global_scope()
    y_grads = []
819
    for i in range(len(y)):
820 821 822
        yi = y[i]
        dyi_name = _append_grad_suffix_(yi.name)
        np_type = dtype_to_np_dtype(yi.dtype)
823 824 825
        dy = program.global_block().create_var(
            name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
        )
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
        dy.stop_gradient = False
        set_var_in_scope(scope, place, dyi_name, dy_init[i])
        y_grads.append(dy)

    # append first order grads
    dx = fluid.gradients(y, x, y_grads)

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init += dy_init
    y = dx

    x_grads_grads_init = []
    for dxi in dx:
        np_type = dtype_to_np_dtype(dxi.dtype)
        value = np.ones(dxi.shape, dtype=np_type)
        x_grads_grads_init.append(value)

845 846 847
    return get_static_double_grad(
        x, y, x_init, dy_init=x_grads_grads_init, place=place, program=program
    )
848 849


850 851 852
def get_eager_triple_grad(
    func, x_init=None, dy_init=None, place=None, return_mid_result=False
):
853 854 855 856 857 858 859
    """
    Get triple Grad result of dygraph.

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
860
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
861
        return_mid_result (list[Tensor], list[Tensor]): If set True, the
862 863 864
    Returns:
        A list of numpy array that stores second derivative result calulated by dygraph
    """
865 866 867
    dd_y, dd_x = get_eager_double_grad(
        func, x_init, dy_init, place, return_mid_result=True
    )
868 869 870 871 872 873 874 875

    # calcluate third derivative
    dddys = []
    for dd_yi in dd_y:
        dd_yi.stop_gradient = False
        dddy = paddle.ones(shape=dd_yi.shape, dtype=dd_yi.dtype)
        dddy.stop_gradient = False
        dddys.append(dddy)
876 877 878
    ddd_inputs = paddle.grad(
        outputs=dd_y, inputs=dd_x, grad_outputs=dddys, allow_unused=True
    )
879 880 881
    return [
        ddd_input.numpy() for ddd_input in ddd_inputs if ddd_input is not None
    ]
882 883


884 885 886 887 888 889 890 891 892 893
def triple_grad_check_for_dygraph(
    func,
    x,
    y,
    x_init=None,
    place=None,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
894
    """
895 896
    Check third order gradients of dygraph. This function will compare the
    third order gradients of dygraph and third order gradients of static graph
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
    to validate dygraph's correctness

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
922 923 924
    for u in y:
        u.stop_gradient = False
        u.persistable = True
925 926 927 928 929 930 931 932 933
    y_grads_init = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        v = np.random.random(size=yi.shape).astype(np_type)
        y_grads_init.append(v)

    x_init = _as_list(x_init)

    paddle.disable_static()
934
    eager_triple_grad = get_eager_triple_grad(func, x_init, y_grads_init, place)
935 936
    paddle.enable_static()

937 938 939
    static_triple_grad = get_static_triple_grad(
        x, y, x_init, y_grads_init, place
    )
940

941
    if len(static_triple_grad) != len(eager_triple_grad):
942 943
        msg = (
            "The output grad tensor's number of static graph is different with dygraph, "
944
            "please check the python api unit test used."
945
        )
946 947
        raise RuntimeError(msg)

948
    for i in range(len(static_triple_grad)):
949 950 951 952 953 954 955
        if not np.allclose(
            static_triple_grad[i], eager_triple_grad[i], rtol, atol
        ):
            msg = (
                'Check eager double result fail. Mismatch between static_graph double grad '
                'and eager double grad on %s, the output double grad tensor\'s index is : %d \n'
                'static:%s\n eager:%s\n'
956
                % (str(place), i, static_triple_grad[i], eager_triple_grad[i])
957
            )
958
            return fail_test(msg)