hybrid_parallel_pp_fp16.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest
import paddle
import numpy as np
import random
import paddle
import paddle.distributed as dist
import paddle.distributed.fleet as fleet
from hybrid_parallel_pp_layer import AlexNetPipeDesc, AlexNet


def set_random_seed(seed, dp_id, rank_id):
    """Set random seed for reproducability."""
    random.seed(seed)
    np.random.seed(seed + dp_id)
    paddle.seed(seed + dp_id)


batch_size = 4
micro_batch_size = 2


class TestDistPPTraning(unittest.TestCase):
    def setUp(self):
        strategy = fleet.DistributedStrategy()
        self.model_parallel_size = 1
        self.data_parallel_size = 1
        self.pipeline_parallel_size = 2
        strategy.hybrid_configs = {
            "dp_degree": self.data_parallel_size,
            "mp_degree": self.model_parallel_size,
            "pp_degree": self.pipeline_parallel_size,
        }
        strategy.pipeline_configs = {
            "accumulate_steps": batch_size // micro_batch_size,
            "micro_batch_size": micro_batch_size
        }
        fleet.init(is_collective=True, strategy=strategy)

    def test_pp_model(self):
        hcg = fleet.get_hybrid_communicate_group()
        word_size = hcg.get_model_parallel_world_size()
        dp_id = hcg.get_data_parallel_rank()
        pp_id = hcg.get_stage_id()
        rank_id = dist.get_rank()
        set_random_seed(1024, dp_id, rank_id)

        grad_clip = paddle.nn.ClipGradByGlobalNorm(1.0)

        #construct model a
        model_a = AlexNet(10)
        scheduler_a = paddle.optimizer.lr.PiecewiseDecay(
            boundaries=[2], values=[0.001, 0.002], verbose=True)
        optimizer_a = paddle.optimizer.SGD(learning_rate=scheduler_a,
                                           grad_clip=grad_clip,
                                           parameters=model_a.parameters())

        scaler_a = paddle.amp.GradScaler(init_loss_scaling=2**5)

        # construct model b
        model_b = AlexNetPipeDesc(num_stages=self.pipeline_parallel_size)
        scheduler_b = paddle.optimizer.lr.PiecewiseDecay(
            boundaries=[2], values=[0.001, 0.002], verbose=True)
        optimizer_b = paddle.optimizer.SGD(learning_rate=scheduler_b,
                                           grad_clip=grad_clip,
                                           parameters=model_b.parameters())

        param_len = len(model_a.parameters())
        parameters = []
        for param in model_a.parameters():
            parameters.append(param.numpy())

        for idx, param in enumerate(model_b.parameters()):
            param.set_value(parameters[idx + pp_id * (param_len // 2)])

        model_a, optimizer_a = paddle.amp.decorate(
            models=model_a,
            optimizers=optimizer_a,
            level='O2',
            save_dtype='float32')
        model_b, optimizer_b = paddle.amp.decorate(
            models=model_b,
            optimizers=optimizer_b,
            level='O2',
            save_dtype='float32')

        model_b = fleet.distributed_model(model_b)
        optimizer_b = fleet.distributed_optimizer(optimizer_b)
        scaler_b = paddle.amp.GradScaler(init_loss_scaling=2**5)
        scaler_b = fleet.distributed_scaler(scaler_b)

        # construct reader
        train_reader = paddle.batch(
            paddle.dataset.mnist.train(), batch_size=batch_size, drop_last=True)

        for step_id, data in enumerate(train_reader()):
            x_data = np.array([x[0] for x in data]).astype('float32').reshape(
                batch_size, 1, 28, 28)
            y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                batch_size, 1)
            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)
            img.stop_gradient = True
            label.stop_gradient = True

            if step_id >= 5:
                return True

            with paddle.amp.auto_cast(enable=True, level='O2'):
                loss_a = model_a(img, label)
                scaler_a.scale(loss_a).backward()
                with paddle.amp.auto_cast(enable=False):
                    scaler_a.minimize(optimizer_a, loss_a)
                optimizer_a.clear_grad()
                scheduler_a.step()

                loss_b = model_b.train_batch(
                    [img, label], optimizer_b, scheduler_b, scaler=scaler_b)

            print("loss: ", loss_a.numpy(), loss_b.numpy())
            np.testing.assert_allclose(
                loss_a.numpy(), loss_b.numpy(), rtol=5e-3)


if __name__ == "__main__":
    unittest.main()