test_prune.py 38.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
import paddle
18 19 20
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.compat as cpt
21 22 23
import numpy as np
import os
import contextlib
24 25 26


class TestPrune(unittest.TestCase):
27

28 29 30 31 32
    def net(self):
        x = fluid.layers.data(name='x', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        y = fluid.layers.fc(input=[x], size=2, act="softmax")
        loss = fluid.layers.cross_entropy(input=y, label=label)
33
        loss = paddle.mean(x=loss)
34 35 36 37 38 39 40 41 42
        return x, y, label, loss

    def test_prune_with_input(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
43 44 45
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "reduce_mean"
        ])
46 47 48 49
        pruned_program = program._prune_with_input(
            feeded_var_names=[y.name, label.name], targets=[loss])
        self.assertEqual(len(pruned_program.global_block().ops), 2)
        self.assertEqual([op.type for op in pruned_program.global_block().ops],
50
                         ["cross_entropy2", "reduce_mean"])
51 52 53 54 55 56 57 58

    def test_prune(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
59 60 61
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "reduce_mean"
        ])
62 63
        pruned_program = program._prune(targets=[loss])
        self.assertEqual(len(pruned_program.global_block().ops), 5)
64 65 66 67 68
        self.assertEqual([op.type for op in pruned_program.global_block().ops],
                         [
                             "mul", "elementwise_add", "softmax",
                             "cross_entropy2", "reduce_mean"
                         ])
69 70 71 72 73 74 75 76

    def test_prune_target_not_list(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
77 78 79
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "reduce_mean"
        ])
80 81
        pruned_program = program._prune(targets=loss)
        self.assertEqual(len(pruned_program.global_block().ops), 5)
82 83 84 85 86
        self.assertEqual([op.type for op in pruned_program.global_block().ops],
                         [
                             "mul", "elementwise_add", "softmax",
                             "cross_entropy2", "reduce_mean"
                         ])
87 88 89 90 91 92 93 94

    def test_prune_target_none(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
95 96 97
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "reduce_mean"
        ])
98 99 100
        try:
            pruned_program = program._prune(targets=None)
        except ValueError as e:
101 102
            self.assertIn(
                "All targets of Program._prune_with_input() can only be Variable or Operator",
103
                str(e))
104 105


106 107 108 109 110 111 112 113 114 115 116 117 118 119
def mock(self, program, feed, fetch, optimize_ops):
    self.prune_called_times += 1
    return program


@contextlib.contextmanager
def _mock_guard(mock):
    original = fluid.Executor._prune_program
    fluid.Executor._prune_program = mock
    yield
    fluid.Executor._prune_program = original


class TestExecutorRunAutoPrune(unittest.TestCase):
120

121 122 123 124 125 126 127 128 129 130 131 132 133
    def net1(self):
        x = fluid.layers.data(name='x', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        w_param_attrs = fluid.ParamAttr(
            name="fc_weight",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
            trainable=True)
        y = fluid.layers.fc(input=[x],
                            size=2,
                            act="softmax",
                            param_attr=w_param_attrs)
        loss1 = fluid.layers.cross_entropy(input=y, label=label)
134
        loss1 = paddle.mean(x=loss1)
135
        loss2 = fluid.layers.cross_entropy(input=y, label=label)
136
        loss2 = paddle.mean(x=loss2)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        loss1.persistable = True
        loss2.persistable = True
        return x, y, label, loss1, loss2, w_param_attrs

    def net2(self):
        x1 = fluid.layers.data(name='x1', shape=[2], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        w1_param_attrs = fluid.ParamAttr(
            name="fc_weight1",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
            trainable=True)
        w2_param_attrs = fluid.ParamAttr(
            name="fc_weight2",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
            trainable=True)
        y1 = fluid.layers.fc(input=[x1],
                             size=2,
                             act="softmax",
                             param_attr=w1_param_attrs)
        y2 = fluid.layers.fc(input=[x2],
                             size=2,
                             act="softmax",
                             param_attr=w2_param_attrs)
        loss1 = fluid.layers.cross_entropy(input=y1, label=label)
164
        loss1 = paddle.mean(x=loss1)
165
        loss2 = fluid.layers.cross_entropy(input=y2, label=label)
166
        loss2 = paddle.mean(x=loss2)
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        return x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs, w2_param_attrs

    def test_not_prune(self):
        """
        If use_prune = False, the targets which is not fetched will be calculated.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
184 185 186 187
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
188 189 190 191 192 193 194
                              fetch_list=[loss1.name],
                              use_prune=False)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNotNone(scope.find_var(loss2.name))

    def test_prune_fetches_without_optimizer(self):
        """
195
        Prune operators and variables which are not needed to generate 'fetches'.
196 197 198 199 200 201 202 203 204 205 206 207 208 209
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
210 211 212 213
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
214 215 216 217 218 219
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))  #loss2 is pruned
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
220 221
                np.testing.assert_array_equal(weight_init,
                                              weight)  # weight not changed
222 223 224

    def test_prune_fetches_with_optimizer(self):
        """
225
        Prune operators and operators which are not needed to generate 'fetches'.
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        In train mode, the operators and operators in backward and optimization should be kept.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
243 244 245 246
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))  #loss2 is pruned
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                self.assertFalse(np.array_equal(weight_init,
                                                weight))  # weight changed

    def test_prune_compiled_program(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                compiled_prog = fluid.CompiledProgram(
268 269
                    program).with_data_parallel(loss_name=loss1.name,
                                                places=fluid.CPUPlace())
270 271 272 273 274
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(compiled_prog,
275 276 277 278
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                self.assertFalse(np.array_equal(weight_init,
                                                weight))  # weight changed

    def test_prune_feed_without_optimizer(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
302 303 304 305
                              feed={
                                  y.name: x_np,
                                  'label': label_np
                              },
306 307 308 309 310 311
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
312 313
                np.testing.assert_array_equal(weight_init,
                                              weight)  # weight unchanged
314 315 316 317 318 319 320 321 322 323 324 325 326 327

    def test_prune_feed_with_optimizer(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
328 329 330 331 332 333 334 335 336
                self.assertRaises(Exception,
                                  exe.run,
                                  program,
                                  feed={
                                      y.name: x_np,
                                      'label': label_np
                                  },
                                  fetch_list=[loss1.name],
                                  use_prune=True)
337 338 339 340 341
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))

    def test_prune_with_cache_program(self):
        '''
342
        When use_prune=True, Executor should cache the pruned program.
343 344 345
        If in next run, the program, feed, fetch are not changed, Executor use the cached pruned program,
        and needn't to call  _prune_program() to prune the program.
        In this test, we hack the Executor._prune_program with a mock function which do nothing but increase
346
        Executor.prune_called_times, and we check prune_called_times equals 1 even if we called exe.run()
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        10 times with the same input arguments.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                    sgd_optimizer.minimize(loss1)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
362 363
                    label_np = np.random.randint(1,
                                                 size=(10, 1)).astype('int64')
364 365
                    for i in range(10):
                        res = exe.run(program,
366 367 368 369
                                      feed={
                                          'x': x_np,
                                          'label': label_np
                                      },
370
                                      fetch_list=[loss1.name],
371
                                      use_prune=True)
372 373 374 375 376
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        else:
                            self.assertEqual(exe.prune_called_times, 1)

377 378 379
    def test_prune_with_cache_program2(self):
        '''
        When use_prune=True, Executor should cache the pruned program.
380
        If the only difference in fetch_list is  optimize_ops during multiple runs,
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        the cache_keys should be different and get different pruned program.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs,
                     w2_param_attrs) = self.net2()
                    adam_optimizer1 = fluid.optimizer.AdamOptimizer(
                        learning_rate=0.5)
                    train1 = adam_optimizer1.minimize(loss1)
                    adam_optimizer2 = fluid.optimizer.AdamOptimizer(
                        learning_rate=0.5)
                    train2 = adam_optimizer2.minimize(loss2)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
401 402
                    label_np = np.random.randint(1,
                                                 size=(10, 1)).astype('int64')
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

                    for i in range(10):
                        if i % 2:
                            res = exe.run(program,
                                          feed={
                                              'x1': x_np,
                                              'x2': x_np,
                                              'label': label_np
                                          },
                                          fetch_list=[loss1, loss2, train1],
                                          use_prune=True)
                        else:
                            res = exe.run(program,
                                          feed={
                                              'x1': x_np,
                                              'x2': x_np,
                                              'label': label_np
                                          },
                                          fetch_list=[loss1, loss2, train2],
                                          use_prune=True)
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        elif i == 1:
                            self.assertEqual(exe.prune_called_times, 2)
                        else:
                            self.assertEqual(exe.prune_called_times, 2)

430 431
    def test_prune_with_cache_compiled_program(self):
        '''
432
        When use_prune=True, Executor should cache the pruned program.
433 434 435
        If in next run, the program, feed, fetch are not changed, Executor use the cached pruned program,
        and needn't to call  _prune_program() to prune the program.
        In this test, we hack the Executor._prune_program with a mock function which do nothing but increase
436
        Executor.prune_called_times, and we check prune_called_times equals 1 even if we called exe.run()
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        10 times with the same input arguments.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                    sgd_optimizer.minimize(loss1)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
452 453
                    label_np = np.random.randint(1,
                                                 size=(10, 1)).astype('int64')
454
                    compiled_prog = fluid.CompiledProgram(
455 456
                        program).with_data_parallel(loss_name=loss1.name,
                                                    places=fluid.CPUPlace())
457 458
                    for i in range(10):
                        res = exe.run(compiled_prog,
459 460 461 462
                                      feed={
                                          'x': x_np,
                                          'label': label_np
                                      },
463
                                      fetch_list=[loss1.name],
464
                                      use_prune=True)
465 466 467 468 469 470 471
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        else:
                            self.assertEqual(exe.prune_called_times, 1)

    def test_prune_with_multi_optimizers(self):
        '''
472
        If there are multiple optimizers in the program, we can run specific one by
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        pass the return of optimize.minimize() to fetch_list.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1, _ = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()
                train2, _ = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
491 492 493 494
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
495 496 497 498 499 500 501 502 503 504
                              fetch_list=[loss1.name],
                              use_prune=False)
                weight_without_prune = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            res = exe.run(program,
505 506 507 508
                          feed={
                              'x': x_np,
                              'label': label_np
                          },
509 510 511 512 513 514 515 516 517 518
                          fetch_list=[loss1.name, train1],
                          use_prune=True)
            weight_with_prune = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            exe.run(cloned_program,
519 520 521 522
                    feed={
                        'x': x_np,
                        'label': label_np
                    },
523 524 525 526 527
                    fetch_list=[loss1.name],
                    use_prune=False)
            weight_expected = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

528
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

    def test_prune_with_multi_devices(self):
        '''
        When training model with multi_devices, the pruned CompiledProgram should share same local scopes.
        This test the correctness.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        os.environ['CPU_NUM'] = str(2)
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs,
                 w2_param_attrs) = self.net2()
                adam_optimizer1 = fluid.optimizer.AdamOptimizer(
                    learning_rate=0.5)
                train1 = adam_optimizer1.minimize(loss1)
                cloned_program = program.clone()
                adam_optimizer2 = fluid.optimizer.AdamOptimizer(
                    learning_rate=0.5)
                train2 = adam_optimizer2.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                compiled_prog1 = fluid.CompiledProgram(
557 558
                    program).with_data_parallel(loss_name=loss1.name,
                                                places=[fluid.CPUPlace()] * 2)
559
                compiled_prog2 = fluid.CompiledProgram(
560 561
                    program).with_data_parallel(loss_name=loss2.name,
                                                places=[fluid.CPUPlace()] * 2)
562 563 564 565 566 567 568 569 570 571 572 573 574 575
                for i in range(10):
                    if i % 2 == 1:
                        res = exe.run(compiled_prog1,
                                      feed=[{
                                          'x1': x_np[0:5, :],
                                          'label': label_np[0:5, :]
                                      }, {
                                          'x1': x_np[5:, :],
                                          'label': label_np[5:, :]
                                      }],
                                      fetch_list=[loss1.name, train1],
                                      use_prune=True)
                    else:
                        res = exe.run(compiled_prog2,
576 577 578 579
                                      feed={
                                          'x2': x_np,
                                          'label': label_np
                                      },
580 581 582 583 584 585 586 587 588 589 590
                                      fetch_list=[loss2.name, train2],
                                      use_prune=True)
                weight1 = np.array(
                    scope.find_var(w1_param_attrs.name).get_tensor())
        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            for i in range(10):
                if i % 2 == 1:
                    exe.run(cloned_program,
591 592 593 594 595
                            feed={
                                'x1': x_np,
                                'x2': x_np,
                                'label': label_np
                            },
596 597 598
                            fetch_list=[loss1.name],
                            use_prune=False)
            weight2 = np.array(scope.find_var(w1_param_attrs.name).get_tensor())
599
        np.testing.assert_allclose(weight1, weight2, rtol=1e-05)
600 601 602

    def test_prune_program_with_tupe_in_fetch_list(self):
        '''
603
        If there are multiple optimizers in the program, we can run specific one by
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
        pass the return of optimize.minimize() to fetch_list.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1 = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()

                train2 = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')

                res = exe.run(program,
624 625 626 627
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
628 629 630 631 632 633 634 635 636 637 638
                              fetch_list=[loss1.name],
                              use_prune=False)

                weight_without_prune = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            res = exe.run(program,
639 640 641 642
                          feed={
                              'x': x_np,
                              'label': label_np
                          },
643 644 645 646 647 648 649 650 651 652
                          fetch_list=[loss1.name, train1],
                          use_prune=True)
            weight_with_prune = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            exe.run(cloned_program,
653 654 655 656
                    feed={
                        'x': x_np,
                        'label': label_np
                    },
657 658 659 660 661
                    fetch_list=[loss1.name],
                    use_prune=False)
            weight_expected = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

662
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

    def test_prune_program_partial_parameter_updated(self):
        """
        When running startup program, all parameters declared will be initialized.
        When running main program with prune=True, the pruned parameters will exist in scope and stay unchanged.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs,
                 w2_param_attrs) = self.net2()
                loss1.persistable = True
                loss2.persistable = True
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1 = sgd_optimizer.minimize(loss1)
                sgd_optimizer1 = fluid.optimizer.SGD(learning_rate=0.5)
                train2 = sgd_optimizer1.minimize(loss2)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight1_init = np.array(
                    scope.find_var(w1_param_attrs.name).get_tensor())
                weight2_init = np.array(
                    scope.find_var(w2_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')

                res = exe.run(program,
693 694 695 696
                              feed={
                                  'x1': x_np,
                                  'label': label_np
                              },
697 698 699 700 701 702 703 704 705 706 707 708
                              fetch_list=[loss1.name, train1],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(w1_param_attrs.name))
                self.assertIsNotNone(scope.find_var(w2_param_attrs.name))
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight1 = np.array(
                    scope.find_var(w1_param_attrs.name).get_tensor())
                weight2 = np.array(
                    scope.find_var(w2_param_attrs.name).get_tensor())
                self.assertFalse(np.array_equal(weight1_init,
                                                weight1))  # weight changed
709 710
                np.testing.assert_array_equal(weight2_init,
                                              weight2)  # weight2 unchanged
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731

    def test_prune_override_use_prune(self):
        '''
        If optimize_ops in provided in the fetch_list, the argument use_prune is always override to True.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1, _ = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()
                train2, _ = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
732 733 734 735
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
736 737 738 739 740 741 742 743 744 745 746
                              fetch_list=[loss1.name],
                              use_prune=False)

                weight_without_prune = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            res = exe.run(program,
747 748 749 750
                          feed={
                              'x': x_np,
                              'label': label_np
                          },
751 752 753 754 755 756 757 758 759
                          fetch_list=[loss1.name, train1])
            weight_with_prune = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            exe.run(cloned_program,
760 761 762 763
                    feed={
                        'x': x_np,
                        'label': label_np
                    },
764 765 766 767 768
                    fetch_list=[loss1.name],
                    use_prune=False)
            weight_expected = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

769
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
770 771
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    def test_prune_feed_var_in_fetchlist_1(self):
        # the variable to be fed is not leaf
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
787 788 789 790
                              feed={
                                  y.name: x_np,
                                  'label': label_np
                              },
791 792 793 794 795 796 797
                              fetch_list=[y.name, loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                self.assertIsNone(scope.find_var(x.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
798 799
                np.testing.assert_array_equal(weight_init,
                                              weight)  # weight unchanged
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

    def test_prune_feed_var_in_fetchlist_2(self):
        # the variable to be fed is leaf
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
816 817 818 819
                              feed={
                                  x.name: x_np,
                                  'label': label_np
                              },
820 821 822 823 824 825
                              fetch_list=[x.name, loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
826 827
                np.testing.assert_array_equal(weight_init,
                                              weight)  # weight unchanged
828

829

830 831
if __name__ == '__main__':
    unittest.main()