test_prune.py 36.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.compat as cpt
22 23 24
import numpy as np
import os
import contextlib
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96


class TestPrune(unittest.TestCase):
    def net(self):
        x = fluid.layers.data(name='x', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        y = fluid.layers.fc(input=[x], size=2, act="softmax")
        loss = fluid.layers.cross_entropy(input=y, label=label)
        loss = fluid.layers.mean(x=loss)
        return x, y, label, loss

    def test_prune_with_input(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "mean"
        ])
        pruned_program = program._prune_with_input(
            feeded_var_names=[y.name, label.name], targets=[loss])
        self.assertEqual(len(pruned_program.global_block().ops), 2)
        self.assertEqual([op.type for op in pruned_program.global_block().ops],
                         ["cross_entropy2", "mean"])

    def test_prune(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "mean"
        ])
        pruned_program = program._prune(targets=[loss])
        self.assertEqual(len(pruned_program.global_block().ops), 5)
        self.assertEqual(
            [op.type for op in pruned_program.global_block().ops],
            ["mul", "elementwise_add", "softmax", "cross_entropy2", "mean"])

    def test_prune_target_not_list(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "mean"
        ])
        pruned_program = program._prune(targets=loss)
        self.assertEqual(len(pruned_program.global_block().ops), 5)
        self.assertEqual(
            [op.type for op in pruned_program.global_block().ops],
            ["mul", "elementwise_add", "softmax", "cross_entropy2", "mean"])

    def test_prune_target_none(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "mean"
        ])
        try:
            pruned_program = program._prune(targets=None)
        except ValueError as e:
97 98
            self.assertIn(
                "All targets of Program._prune_with_input() can only be Variable or Operator",
99 100 101
                cpt.get_exception_message(e))


102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
def mock(self, program, feed, fetch, optimize_ops):
    self.prune_called_times += 1
    return program


@contextlib.contextmanager
def _mock_guard(mock):
    original = fluid.Executor._prune_program
    fluid.Executor._prune_program = mock
    yield
    fluid.Executor._prune_program = original


class TestExecutorRunAutoPrune(unittest.TestCase):
    def net1(self):
        x = fluid.layers.data(name='x', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        w_param_attrs = fluid.ParamAttr(
            name="fc_weight",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
            trainable=True)
        y = fluid.layers.fc(input=[x],
                            size=2,
                            act="softmax",
                            param_attr=w_param_attrs)
        loss1 = fluid.layers.cross_entropy(input=y, label=label)
        loss1 = fluid.layers.mean(x=loss1)
        loss2 = fluid.layers.cross_entropy(input=y, label=label)
        loss2 = fluid.layers.mean(x=loss2)
        loss1.persistable = True
        loss2.persistable = True
        return x, y, label, loss1, loss2, w_param_attrs

    def net2(self):
        x1 = fluid.layers.data(name='x1', shape=[2], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        w1_param_attrs = fluid.ParamAttr(
            name="fc_weight1",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
            trainable=True)
        w2_param_attrs = fluid.ParamAttr(
            name="fc_weight2",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
            trainable=True)
        y1 = fluid.layers.fc(input=[x1],
                             size=2,
                             act="softmax",
                             param_attr=w1_param_attrs)
        y2 = fluid.layers.fc(input=[x2],
                             size=2,
                             act="softmax",
                             param_attr=w2_param_attrs)
        loss1 = fluid.layers.cross_entropy(input=y1, label=label)
        loss1 = fluid.layers.mean(x=loss1)
        loss2 = fluid.layers.cross_entropy(input=y2, label=label)
        loss2 = fluid.layers.mean(x=loss2)
        return x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs, w2_param_attrs

    def test_not_prune(self):
        """
        If use_prune = False, the targets which is not fetched will be calculated.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
                              feed={'x': x_np,
                                    'label': label_np},
                              fetch_list=[loss1.name],
                              use_prune=False)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNotNone(scope.find_var(loss2.name))

    def test_prune_fetches_without_optimizer(self):
        """
        Prune operators and variables which are not needed to generate 'fetches'. 
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
                              feed={'x': x_np,
                                    'label': label_np},
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))  #loss2 is pruned
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                self.assertTrue(np.array_equal(weight_init,
                                               weight))  # weight not changed

    def test_prune_fetches_with_optimizer(self):
        """
        Prune operators and operators which are not needed to generate 'fetches'. 
        In train mode, the operators and operators in backward and optimization should be kept.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
                              feed={'x': x_np,
                                    'label': label_np},
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))  #loss2 is pruned
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                self.assertFalse(np.array_equal(weight_init,
                                                weight))  # weight changed

    def test_prune_compiled_program(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                compiled_prog = fluid.CompiledProgram(
                    program).with_data_parallel(
                        loss_name=loss1.name, places=fluid.CPUPlace())
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(compiled_prog,
                              feed={'x': x_np,
                                    'label': label_np},
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                self.assertFalse(np.array_equal(weight_init,
                                                weight))  # weight changed

    def test_prune_feed_without_optimizer(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
                              feed={y.name: x_np,
                                    'label': label_np},
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                self.assertTrue(np.array_equal(weight_init,
                                               weight))  # weight unchanged

    def test_prune_feed_with_optimizer(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                self.assertRaises(
                    Exception,
                    exe.run,
                    program,
                    feed={y.name: x_np,
                          'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))

    def test_prune_with_cache_program(self):
        '''
326
        When use_prune=True, Executor should cache the pruned program.
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        If in next run, the program, feed, fetch are not changed, Executor use the cached pruned program,
        and needn't to call  _prune_program() to prune the program.
        In this test, we hack the Executor._prune_program with a mock function which do nothing but increase
        Executor.prune_called_times, and we check prune_called_times equals 1 even if we called exe.run() 
        10 times with the same input arguments.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                    sgd_optimizer.minimize(loss1)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
                    label_np = np.random.randint(
                        1, size=(10, 1)).astype('int64')
                    for i in range(10):
                        res = exe.run(program,
                                      feed={'x': x_np,
                                            'label': label_np},
                                      fetch_list=[loss1.name],
353
                                      use_prune=True)
354 355 356 357 358
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        else:
                            self.assertEqual(exe.prune_called_times, 1)

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    def test_prune_with_cache_program2(self):
        '''
        When use_prune=True, Executor should cache the pruned program.
        If the only difference in fetch_list is  optimize_ops during multiple runs, 
        the cache_keys should be different and get different pruned program.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs,
                     w2_param_attrs) = self.net2()
                    adam_optimizer1 = fluid.optimizer.AdamOptimizer(
                        learning_rate=0.5)
                    train1 = adam_optimizer1.minimize(loss1)
                    adam_optimizer2 = fluid.optimizer.AdamOptimizer(
                        learning_rate=0.5)
                    train2 = adam_optimizer2.minimize(loss2)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
                    label_np = np.random.randint(
                        1, size=(10, 1)).astype('int64')

                    for i in range(10):
                        if i % 2:
                            res = exe.run(program,
                                          feed={
                                              'x1': x_np,
                                              'x2': x_np,
                                              'label': label_np
                                          },
                                          fetch_list=[loss1, loss2, train1],
                                          use_prune=True)
                        else:
                            res = exe.run(program,
                                          feed={
                                              'x1': x_np,
                                              'x2': x_np,
                                              'label': label_np
                                          },
                                          fetch_list=[loss1, loss2, train2],
                                          use_prune=True)
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        elif i == 1:
                            self.assertEqual(exe.prune_called_times, 2)
                        else:
                            self.assertEqual(exe.prune_called_times, 2)

412 413
    def test_prune_with_cache_compiled_program(self):
        '''
414
        When use_prune=True, Executor should cache the pruned program.
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        If in next run, the program, feed, fetch are not changed, Executor use the cached pruned program,
        and needn't to call  _prune_program() to prune the program.
        In this test, we hack the Executor._prune_program with a mock function which do nothing but increase
        Executor.prune_called_times, and we check prune_called_times equals 1 even if we called exe.run() 
        10 times with the same input arguments.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                    sgd_optimizer.minimize(loss1)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
                    label_np = np.random.randint(
                        1, size=(10, 1)).astype('int64')
                    compiled_prog = fluid.CompiledProgram(
                        program).with_data_parallel(
                            loss_name=loss1.name, places=fluid.CPUPlace())
                    for i in range(10):
                        res = exe.run(compiled_prog,
                                      feed={'x': x_np,
                                            'label': label_np},
                                      fetch_list=[loss1.name],
444
                                      use_prune=True)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        else:
                            self.assertEqual(exe.prune_called_times, 1)

    def test_prune_with_multi_optimizers(self):
        '''
        If there are multiple optimizers in the program, we can run specific one by 
        pass the return of optimize.minimize() to fetch_list.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1, _ = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()
                train2, _ = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
                              feed={'x': x_np,
                                    'label': label_np},
                              fetch_list=[loss1.name],
                              use_prune=False)
                weight_without_prune = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            res = exe.run(program,
                          feed={'x': x_np,
                                'label': label_np},
                          fetch_list=[loss1.name, train1],
                          use_prune=True)
            weight_with_prune = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            exe.run(cloned_program,
                    feed={'x': x_np,
                          'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=False)
            weight_expected = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        self.assertTrue(np.array_equal(weight_with_prune, weight_expected))
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

    def test_prune_with_multi_devices(self):
        '''
        When training model with multi_devices, the pruned CompiledProgram should share same local scopes.
        This test the correctness.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        os.environ['CPU_NUM'] = str(2)
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs,
                 w2_param_attrs) = self.net2()
                adam_optimizer1 = fluid.optimizer.AdamOptimizer(
                    learning_rate=0.5)
                train1 = adam_optimizer1.minimize(loss1)
                cloned_program = program.clone()
                adam_optimizer2 = fluid.optimizer.AdamOptimizer(
                    learning_rate=0.5)
                train2 = adam_optimizer2.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                compiled_prog1 = fluid.CompiledProgram(
                    program).with_data_parallel(
                        loss_name=loss1.name, places=[fluid.CPUPlace()] * 2)
                compiled_prog2 = fluid.CompiledProgram(
                    program).with_data_parallel(
                        loss_name=loss2.name, places=[fluid.CPUPlace()] * 2)
                for i in range(10):
                    if i % 2 == 1:
                        res = exe.run(compiled_prog1,
                                      feed=[{
                                          'x1': x_np[0:5, :],
                                          'label': label_np[0:5, :]
                                      }, {
                                          'x1': x_np[5:, :],
                                          'label': label_np[5:, :]
                                      }],
                                      fetch_list=[loss1.name, train1],
                                      use_prune=True)
                    else:
                        res = exe.run(compiled_prog2,
                                      feed={'x2': x_np,
                                            'label': label_np},
                                      fetch_list=[loss2.name, train2],
                                      use_prune=True)
                weight1 = np.array(
                    scope.find_var(w1_param_attrs.name).get_tensor())
        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            for i in range(10):
                if i % 2 == 1:
                    exe.run(cloned_program,
                            feed={'x1': x_np,
                                  'x2': x_np,
                                  'label': label_np},
                            fetch_list=[loss1.name],
                            use_prune=False)
            weight2 = np.array(scope.find_var(w1_param_attrs.name).get_tensor())
        self.assertTrue(np.allclose(weight1, weight2))

    def test_prune_program_with_tupe_in_fetch_list(self):
        '''
        If there are multiple optimizers in the program, we can run specific one by 
        pass the return of optimize.minimize() to fetch_list.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1 = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()

                train2 = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')

                res = exe.run(program,
                              feed={'x': x_np,
                                    'label': label_np},
                              fetch_list=[loss1.name],
                              use_prune=False)

                weight_without_prune = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            res = exe.run(program,
                          feed={'x': x_np,
                                'label': label_np},
                          fetch_list=[loss1.name, train1],
                          use_prune=True)
            weight_with_prune = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            exe.run(cloned_program,
                    feed={'x': x_np,
                          'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=False)
            weight_expected = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        self.assertTrue(np.array_equal(weight_with_prune, weight_expected))
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

    def test_prune_program_partial_parameter_updated(self):
        """
        When running startup program, all parameters declared will be initialized.
        When running main program with prune=True, the pruned parameters will exist in scope and stay unchanged.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs,
                 w2_param_attrs) = self.net2()
                loss1.persistable = True
                loss2.persistable = True
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1 = sgd_optimizer.minimize(loss1)
                sgd_optimizer1 = fluid.optimizer.SGD(learning_rate=0.5)
                train2 = sgd_optimizer1.minimize(loss2)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight1_init = np.array(
                    scope.find_var(w1_param_attrs.name).get_tensor())
                weight2_init = np.array(
                    scope.find_var(w2_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')

                res = exe.run(program,
                              feed={'x1': x_np,
                                    'label': label_np},
                              fetch_list=[loss1.name, train1],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(w1_param_attrs.name))
                self.assertIsNotNone(scope.find_var(w2_param_attrs.name))
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight1 = np.array(
                    scope.find_var(w1_param_attrs.name).get_tensor())
                weight2 = np.array(
                    scope.find_var(w2_param_attrs.name).get_tensor())
                self.assertFalse(np.array_equal(weight1_init,
                                                weight1))  # weight changed
                self.assertTrue(np.array_equal(weight2_init,
                                               weight2))  # weight2 unchanged

    def test_prune_override_use_prune(self):
        '''
        If optimize_ops in provided in the fetch_list, the argument use_prune is always override to True.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1, _ = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()
                train2, _ = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
                              feed={'x': x_np,
                                    'label': label_np},
                              fetch_list=[loss1.name],
                              use_prune=False)

                weight_without_prune = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            res = exe.run(program,
                          feed={'x': x_np,
                                'label': label_np},
                          fetch_list=[loss1.name, train1])
            weight_with_prune = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            exe.run(cloned_program,
                    feed={'x': x_np,
                          'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=False)
            weight_expected = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        self.assertTrue(np.array_equal(weight_with_prune, weight_expected))
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
    def test_prune_feed_var_in_fetchlist_1(self):
        # the variable to be fed is not leaf
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
                              feed={y.name: x_np,
                                    'label': label_np},
                              fetch_list=[y.name, loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                self.assertIsNone(scope.find_var(x.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                self.assertTrue(np.array_equal(weight_init,
                                               weight))  # weight unchanged

    def test_prune_feed_var_in_fetchlist_2(self):
        # the variable to be fed is leaf
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
                              feed={x.name: x_np,
                                    'label': label_np},
                              fetch_list=[x.name, loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                self.assertTrue(np.array_equal(weight_init,
                                               weight))  # weight unchanged

781

782 783
if __name__ == '__main__':
    unittest.main()