analysis_predictor.h 16.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#pragma once
16 17
#include <algorithm>
#include <map>
N
nhzlx 已提交
18
#include <memory>
19 20
#include <string>
#include <vector>
21
#include "paddle/phi/common/data_type.h"
22
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
23 24
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#endif
25
#include "paddle/fluid/framework/naive_executor.h"
26
#include "paddle/fluid/framework/op_compatible_info.h"
Y
Yan Chunwei 已提交
27 28
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
N
nhzlx 已提交
30
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/api/paddle_inference_api.h"
32
#include "paddle/fluid/inference/api/resource_manager.h"
W
Wilber 已提交
33
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
34
#include "paddle/fluid/platform/float16.h"
35
#include "paddle/fluid/string/printf.h"
36 37 38 39
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
40

41 42
namespace paddle_infer {
using float16 = paddle::platform::float16;
W
Wilber 已提交
43 44 45
namespace experimental {
class InternalUtils;
};
46
}  // namespace paddle_infer
47 48 49 50 51 52 53 54 55 56 57
///
/// \file analysis_predictor.h
///
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
/// predictor that includes many optimizations
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///

Y
Yan Chunwei 已提交
58 59
namespace paddle {

60
using framework::NaiveExecutor;
61 62 63
using framework::proto::ProgramDesc;
using inference::analysis::Analyzer;
using inference::analysis::Argument;
Y
Yan Chunwei 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
///
/// \class AnalysisPredictor
///
/// \brief The analysis predictor is based on the original native predictor with
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
///   auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
///   auto input_names = predictor->GetInputNames();
///   auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
///   auto input_t = predictor->GetInputTensor(input_names[0]);
///   auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
///   predictor->ZeroCopyRun();
/// \endcode
///
95
class AnalysisPredictor : public PaddlePredictor {
Y
Yan Chunwei 已提交
96
 public:
97 98 99 100 101
  ///
  /// \brief Construct a new Analysis Predictor object
  ///
  /// \param[in] AnalysisConfig config
  ///
102
  explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
103 104 105 106
    if (config_.shape_range_info_collected()) {
      config_.SwitchIrOptim(false);
      config_.EnableMemoryOptim(false);
    }
107 108
    predictor_id_ = inference::GetUniqueId();
  }
109 110 111
  ///
  /// \brief Destroy the Analysis Predictor object
  ///
F
flame 已提交
112
  ~AnalysisPredictor();
Y
Yan Chunwei 已提交
113

114 115 116 117 118 119 120 121 122 123 124 125
  ///
  /// \brief Initialize predictor
  ///
  /// Initializing predictor mainly includes the following tasks:
  /// preparing scope, creating executor, preparing program, initializing the
  /// variables required by the executor, getting the feed_target_names and
  /// fetch_target_names, etc.
  ///
  /// \param[in] parent_scope parent scope
  /// \param[in] program program
  /// \return Whether the init function executed successfully
  ///
126 127
  bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
            const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
Y
Yan Chunwei 已提交
128

129 130 131 132 133 134 135 136
  ///
  /// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
  ///
  /// \param[in] inputs input tensors
  /// \param[out] output_data output tensors
  /// \param[in] batch_size data's batch size
  /// \return Whether the function executed successfully
  ///
137 138 139 140
  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

141 142 143 144 145
  ///
  /// \brief Get the input names
  ///
  /// \return input names
  ///
N
nhzlx 已提交
146
  std::vector<std::string> GetInputNames();
147 148 149 150 151
  ///
  /// \brief Get the output names
  ///
  /// \return output names
  ///
N
nhzlx 已提交
152 153
  std::vector<std::string> GetOutputNames();

154 155 156 157 158 159
  ///
  /// \brief Get the Input Tensor object
  ///
  /// \param[in] name input name
  /// \return input tensor
  ///
160 161
  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;
162 163 164 165 166 167
  ///
  /// \brief Get the Output Tensor object
  ///
  /// \param[in] name otuput name
  /// \return output tensor
  ///
168 169
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;
170 171 172 173 174
  ///
  /// \brief Get all input names and their corresponding shapes
  ///
  /// \return the map of input names and shapes
  ///
175
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;
176 177 178 179 180 181
  ///
  /// \brief Get all input names and their corresponding type
  ///
  /// \return the map of input names and type
  ///
  std::map<std::string, paddle_infer::DataType> GetInputTypes() override;
182

183 184 185 186 187
  ///
  /// \brief Run the prediction engine
  ///
  /// \return Whether the function executed successfully
  ///
188 189
  bool ZeroCopyRun() override;

W
Wilber 已提交
190 191 192 193 194
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // Note: Can only be used under thread_local semantics.
  bool ExpRunWithExternalStream(const gpuStream_t stream);
#endif

195 196 197 198 199 200 201 202
  ///
  /// \brief Get the execution stream on devices with a concept of stream,
  /// otherwise returns nullptr.
  ///
  /// \return The execution stream or nullptr (CPU).
  ///
  void *GetExecStream() const override;

203 204 205 206 207
  ///
  /// \brief Create feed fetch variables
  ///
  /// \param[in] scope Scope needed to create variables
  ///
208
  void CreateFeedFetchVar(framework::Scope *scope);
209 210 211 212
  ///
  /// \brief Determine the model's inputs and outputs based on the program's
  /// feed fetch op
  ///
213
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
214

215 216 217 218
  ///
  /// \brief Set predictor's argument according to config, which mainly includes
  /// execution information and graph optimization related pass information
  ///
219
  void PrepareArgument();
220 221 222 223
  ///
  /// \brief According to argument information, execute the relevant pass
  /// to get the optimized model program
  ///
Y
Yan Chunwei 已提交
224 225
  void OptimizeInferenceProgram();

226 227 228 229 230 231
  ///
  /// \brief Clear the intermediate tensors of the predictor
  ///
  ///
  void ClearIntermediateTensor();

232 233 234 235 236 237 238 239 240 241 242
  ///
  /// \brief Release all tmp tensor to compress the size of the memory pool.
  /// The memory pool is considered to be composed of a list of chunks, if
  /// the chunk is not occupied, it can be released.
  ///
  /// \return Number of bytes released. It may be smaller than the actual
  /// released memory, because part of the memory is not managed by the
  /// MemoryPool.
  ///
  uint64_t TryShrinkMemory() override;

243 244 245 246 247
  ///
  /// \brief Get the argument used by predictor
  ///
  /// \return the argument obtained by config
  ///
248
  Argument &analysis_argument() { return argument_; }
249 250 251 252 253
  ///
  /// \brief Clone to get the new predictor. thread safe.
  ///
  /// \return get a new predictor
  ///
254
  std::unique_ptr<PaddlePredictor> Clone(void *stream = nullptr) override;
255 256 257 258 259
  ///
  /// \brief Get the scope used by predictor
  ///
  /// \return scope
  ///
260
  framework::Scope *scope() { return scope_.get(); }
261 262 263 264 265
  ///
  /// \brief Get the inference program
  ///
  /// \return the inference program
  ///
266 267
  framework::ProgramDesc &program() { return *inference_program_; }

268 269 270 271 272
  ///
  /// \brief Get the serialized program
  ///
  /// \return the serialized program
  ///
273
  std::string GetSerializedProgram() const override;
Y
Yan Chunwei 已提交
274

275 276 277 278 279
  ///
  /// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
  ///
  /// \return Whether the function executed successfully
  ///
280 281
  bool MkldnnQuantize();

282 283 284 285 286
  ///
  /// \brief save program to model and save parameters to params
  ///
  /// \param[in] dir path to save the model
  ///
287 288
  void SaveOptimModel(const std::string &dir);

289
 protected:
290 291 292 293 294 295 296
  ///
  /// \brief Prepare predictor's required programs, including loading model
  /// information, graph optimization, and executor creation variables, etc.
  ///
  /// \param[in] program paddle program
  /// \return Whether the function executed successfully
  ///
297
  bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
298 299 300 301 302 303
  ///
  /// \brief Prepare scope environment, each predictor has its own scope
  ///
  /// \param[in] parent_scope The scope of the predictor to be cloned, or null
  /// \return Whether the function executed successfully
  ///
304
  bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
305 306 307 308 309
  ///
  /// \brief Create an Executor object
  ///
  /// \return Whether the function executed successfully
  ///
310
  bool CreateExecutor();
311 312 313 314 315
  ///
  /// \brief According to the model's program, the executor creates ops
  ///
  /// \return Whether the function executed successfully
  ///
316 317
  bool PrepareExecutor();

318 319 320 321 322
  ///
  /// \brief Load model program.
  ///
  /// \return Whether the function executed successfully
  ///
323
  bool LoadProgramDesc();
324 325 326 327 328
  ///
  /// \brief Load model parameters.
  ///
  /// \return Whether the function executed successfully
  ///
329
  bool LoadParameters();
330

331 332 333 334 335 336 337
  ///
  /// \brief Prepare input data, only used in Run()
  ///
  /// \param[in] input_datas inpute tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
338 339
  bool SetFeed(const std::vector<PaddleTensor> &input_datas,
               framework::Scope *scope);
340 341 342 343 344 345 346
  ///
  /// \brief Get the output data, only used in Run()
  ///
  /// \param[out] output_data output tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
347 348
  bool GetFetch(std::vector<PaddleTensor> *output_data,
                framework::Scope *scope);
349 350 351 352 353 354
  ///
  /// \brief Get the output data, only used in GetFetch()
  ///
  /// \param[in] tensor for fetch op
  /// \param[out] output_data output tensor
  ///
355 356 357
  template <typename T>
  void GetFetchOne(const framework::LoDTensor &fetchs,
                   PaddleTensor *output_data);
358 359 360 361 362 363 364 365
  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensors
  ///
366
  void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
W
Wilber 已提交
367 368 369 370 371 372 373 374 375 376 377

  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensor shape
  ///
  void MkldnnPreSet(const std::vector<std::vector<int>> &inputs_shape);

378 379 380 381 382 383
  ///
  /// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
384
  void MkldnnPostReset();
Y
Yan Chunwei 已提交
385

N
nhzlx 已提交
386
#if PADDLE_WITH_TENSORRT
387 388 389 390 391 392 393 394 395 396 397 398 399 400
  ///
  /// \brief save calibration table
  ///
  /// When we use Paddle-TRT INT8 engine, we need to generate calibration table
  /// data first,
  /// the calibration table contains the range for each op's input and output,
  /// this whole process can be divided into several steps:
  /// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
  ///  histogram for each tensor of the distribution of activation values.
  /// 2. Builds a calibration table from the histograms.
  /// After step 2, we need to store the calibration table on disk.
  ///
  /// \return Whether the function executed successfully
  ///
N
nhzlx 已提交
401
  bool SaveTrtCalibToDisk();
N
nhzlx 已提交
402
#endif
N
nhzlx 已提交
403

404 405 406 407 408 409 410 411
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(AnalysisPredictor, analysis_off);
  FRIEND_TEST(AnalysisPredictor, analysis_on);
  FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif

412 413 414
 protected:
  const void *GetDeviceContexts() const override;

415 416 417 418
 private:
  void StatisticShapeRangeInfo();
  void CollectShapeRangeInfo();

419 420 421 422
  void InitPlace();
  void InitDeviceContexts();
  void InitResourceManager(void *stream);

423
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  // fleet exe related

  ///
  /// \brief prepare for fleet executor to run
  ///
  /// Used in AnalysisPredictor::Init(),
  ///
  bool PrepareFleetExecutor();

  ///
  /// \brief init NCCL env for multi gpus inference
  ///
  /// Used in AnalysisPredictor::PrepareFleetExecutor()
  ///
  bool CommInit();

  ///
  /// \brief read the config to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] ring_id_to_ranks: a ptr to ring_id_to_ranks
  /// \param[in] rank_to_ring_ids: a ptr to rank_to_ring_ids
  ///
  bool LoadConverterConfig(
      std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
      std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids);

  ///
  /// \brief add ops and run them with NaiveExecutor to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] tmp_var_name: var name to hold NCCL unique id
  /// \param[in] nranks: number of ranks in one comm group
  /// \param[in] rank: relative rank of current rank in the comm group
  /// \param[in] peer_endpoints: group's peers' endpoints
  /// \param[in] block: the block to insert comm ops
  /// \param[in] ring_id: the ring id to be used to init NCCL env
  ///
464 465 466
  void InsertCommOp(std::string tmp_var_name,
                    int nranks,
                    int rank,
467
                    const std::vector<std::string> &peer_endpoints,
468 469
                    framework::BlockDesc *block,
                    int ring_id);
470 471
#endif

Y
Yan Chunwei 已提交
472
 private:
473
  AnalysisConfig config_;
Y
Yan Chunwei 已提交
474
  Argument argument_;
475 476 477 478 479
  std::unique_ptr<NaiveExecutor> executor_;
  platform::Place place_;
  std::shared_ptr<framework::Scope> scope_;
  framework::Scope *sub_scope_{nullptr};
  std::shared_ptr<framework::ProgramDesc> inference_program_;
480
  framework::OpCompatibleMap op_compatible_map_;
481 482
  std::vector<framework::OpDesc *> feeds_;
  std::map<std::string, size_t> feed_names_;
N
nhzlx 已提交
483 484
  // Sorted according to the idx.
  std::map<size_t, std::string> idx2feeds_;
Y
Yan Chunwei 已提交
485
  std::vector<framework::OpDesc *> fetches_;
N
nhzlx 已提交
486 487
  std::map<size_t, std::string> idx2fetches_;

488 489
  phi::DataType model_precision_{phi::DataType::FLOAT32};

490 491 492 493 494 495 496 497 498 499
#if PADDLE_WITH_MKLDNN
  // Helper class to perform quantization
  class MkldnnQuantizer;
  MkldnnQuantizer *mkldnn_quantizer_{nullptr};

#if PADDLE_WITH_TESTING
  friend class MkldnnQuantizerTest;
#endif
#endif

500
  // Memory buffer for feed inputs. The temporary LoDTensor will cause serious
501
  // concurrency problems, wrong results and memory leak, so cache them.
502
  std::vector<framework::LoDTensor> feed_tensors_;
Y
Yan Chunwei 已提交
503
  details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
Y
Yan Chunwei 已提交
504 505
  // A mutex help to make Clone thread safe.
  std::mutex clone_mutex_;
506

Y
Yan Chunwei 已提交
507 508 509 510
  // For memory optimization.
  const size_t max_shape_collect_count_{1000};
  int need_collect_var_shapes_{-1};  // -1 for default, 0 for false, 1 for true.
  std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
511
  int predictor_id_;
Y
Yan Chunwei 已提交
512

513 514 515
 private:
  // Some status here that help to determine the status inside the predictor.
  bool status_is_cloned_{false};
516 517

  std::map<std::string, std::vector<std::vector<int32_t>>> shape_info_;
518
  std::map<std::string, std::vector<std::vector<int32_t>>> shape_tensor_value_;
519
  static int clone_num_;
520

521 522 523 524 525
  bool private_context_{false};
  void *predictor_stream_{nullptr};
  std::map<phi::Place, std::shared_future<std::unique_ptr<phi::DeviceContext>>>
      device_contexts_;

526
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
527 528 529 530 531
  // fleet executor related
  distributed::FleetExecutorDesc executor_desc_;
  std::shared_ptr<distributed::FleetExecutor> fleet_exe_;
  std::shared_ptr<distributed::TaskNode> task_node_;
#endif
W
Wilber 已提交
532
  friend class paddle_infer::experimental::InternalUtils;
Y
Yan Chunwei 已提交
533 534 535
};

}  // namespace paddle