fusion_conv_inception_op.cu 12.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_helper.h"

DECLARE_uint64(conv_workspace_size_limit);

namespace paddle {
namespace operators {

24
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;

using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using PoolingMode = platform::PoolingMode;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto filters = ctx.MultiInput<framework::Tensor>("Filter");
    auto bias = ctx.MultiInput<framework::Tensor>("Bias");

    auto* output = ctx.Output<Tensor>("Output");
    auto temp_outs = ctx.MultiOutput<framework::Tensor>("TempOutput");

    const std::string pool_type = ctx.Attr<std::string>("pooling_type");
    const std::string activation = ctx.Attr<std::string>("activation");
    const bool exclusive = ctx.Attr<bool>("exclusive");

    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    T* temp_data = temp_outs[0]->mutable_data<T>(input->dims(), ctx.GetPlace());

    DataLayout layout = DataLayout::kNCHW;
64
    std::vector<int> in_dim = framework::vectorize<int>(input->dims());
Q
qingqing01 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    // ------------------- cudnn descriptors ---------------------
    PoolingMode pooling_mode;
    if (pool_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : (PoolingMode::kAverageInclusive);
    }
    std::vector<int> k0x0 = {0, 0};
    std::vector<int> k1x1 = {1, 1};
    std::vector<int> k1x1_2 = {1, 1};
    std::vector<int> k3x3 = {3, 3};
    ScopedPoolingDescriptor pool_desc;
    ScopedActivationDescriptor act_desc;
    ScopedTensorDescriptor out_pool_desc;
    ScopedTensorDescriptor input_desc;
    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, k3x3, k1x1, k1x1);

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
86
        layout, framework::vectorize<int>(input->dims()));
Q
qingqing01 已提交
87
    cudnnTensorDescriptor_t pool_out_desc = out_pool_desc.descriptor<T>(
88
        layout, framework::vectorize<int>(input->dims()));
Q
qingqing01 已提交
89 90 91 92 93 94 95 96 97

    cudnnDataType_t cudnn_dtype = CudnnDataType<T>::type;
    cudnnTensorDescriptor_t* out_desc = new cudnnTensorDescriptor_t[4];
    cudnnFilterDescriptor_t* filter_desc = new cudnnFilterDescriptor_t[4];
    cudnnTensorDescriptor_t* bias_desc = new cudnnTensorDescriptor_t[4];
    cudnnTensorDescriptor_t* in_desc = new cudnnTensorDescriptor_t[4];
    cudnnConvolutionDescriptor_t* conv_desc =
        new cudnnConvolutionDescriptor_t[4];
    for (int i = 0; i < 4; ++i) {
98
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
99
          platform::dynload::cudnnCreateFilterDescriptor(&filter_desc[i]));
100
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
101
          platform::dynload::cudnnCreateTensorDescriptor(&bias_desc[i]));
102
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
103
          platform::dynload::cudnnCreateTensorDescriptor(&in_desc[i]));
104
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
105
          platform::dynload::cudnnCreateTensorDescriptor(&out_desc[i]));
106
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
          platform::dynload::cudnnCreateConvolutionDescriptor(&conv_desc[i]));
    }

    std::vector<std::vector<int>> filter_dims;
    std::vector<std::vector<int>> bias_dims;
    std::vector<std::vector<int>> in_dims;
    std::vector<std::vector<int>> out_dims;
    std::vector<std::vector<int>> in_strides;
    std::vector<std::vector<int>> out_strides;
    std::vector<std::vector<int>> bias_strides;

    cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
    int n = in_dim[0];
    int h = in_dim[2];
    int w = in_dim[3];
    int oc = output->dims()[1];

    cudnnDataType_t compute_type = (cudnn_dtype == CUDNN_DATA_DOUBLE)
                                       ? CUDNN_DATA_DOUBLE
                                       : CUDNN_DATA_FLOAT;

    for (int i = 0; i < 4; ++i) {
129
      filter_dims.push_back(framework::vectorize<int>(filters[i]->dims()));
130
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetFilterNdDescriptor(
Q
qingqing01 已提交
131 132 133
          filter_desc[i], cudnn_dtype, format, 4, filter_dims[i].data()));
      bias_dims.push_back({1, filter_dims[i][0], 1, 1});
      bias_strides.push_back({filter_dims[i][0], 1, 1, 1});
134
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
135 136 137 138 139 140 141 142
          bias_desc[i], cudnn_dtype, 4, bias_dims[i].data(),
          bias_strides[i].data()));
      in_dims.push_back({n, filter_dims[i][1], h, w});
      out_dims.push_back({n, filter_dims[i][0], h, w});
      in_strides.push_back({filter_dims[i][1] * h * w, h * w, w, 1});
      out_strides.push_back({oc * h * w, h * w, w, 1});

      if (i < 2) {
143 144 145 146
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnSetConvolutionNdDescriptor(
                conv_desc[i], 2, k0x0.data(), k1x1.data(), k1x1.data(),
                CUDNN_CROSS_CORRELATION, compute_type));
Q
qingqing01 已提交
147
      } else {
148 149 150 151
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnSetConvolutionNdDescriptor(
                conv_desc[i], 2, k1x1.data(), k1x1.data(), k1x1.data(),
                CUDNN_CROSS_CORRELATION, compute_type));
Q
qingqing01 已提交
152
      }
153 154 155
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(conv_desc[i],
                                                         CUDNN_DEFAULT_MATH));
Q
qingqing01 已提交
156 157 158 159 160
    }
    in_dims[2][1] *= 2;
    in_strides[2][0] = oc * h * w;
    out_strides[2][0] = filter_dims[2][0] * h * w;  // this out is continuous.
    in_strides[3][0] = filter_dims[2][0] * h * w;
161
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
162 163 164 165 166 167
        platform::dynload::cudnnSetConvolutionGroupCount(conv_desc[2], 2));

    cudnnConvolutionFwdAlgo_t algo[4];
    auto handle = dev_ctx.cudnn_handle();
    size_t workspace_size_in_bytes = 0;  // final workspace to allocate.

168
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
169 170
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
171
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
172 173 174 175 176
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    for (int i = 0; i < 4; ++i) {
177
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
178
          in_desc[i], cudnn_dtype, 4, in_dims[i].data(), in_strides[i].data()));
179
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
180 181
          out_desc[i], cudnn_dtype, 4, out_dims[i].data(),
          out_strides[i].data()));
182 183 184 185 186
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo[i]));
Q
qingqing01 已提交
187
      size_t tmp_size = 0;
188 189 190 191
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
              handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
              algo[i], &tmp_size));
Q
qingqing01 已提交
192 193 194 195 196 197 198 199 200 201 202 203
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    int oc0 = filter_dims[0][0];
    int oc1 = filter_dims[1][0] - filter_dims[2][1] * 2;
    int oc3 = filter_dims[3][0];
    int oc2 = oc - oc0 - oc1 - oc3;

    // branch1: pool + 1x1 conv
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
204
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnPoolingForward(
Q
qingqing01 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
        pool_out_desc, temp_data));

    std::vector<const void*> in_datas;
    in_datas.push_back(static_cast<const void*>(temp_data));
    in_datas.push_back(static_cast<const void*>(input_data));
    in_datas.push_back(
        static_cast<const void*>(output_data + (oc0 + oc1) * h * w));
    T* temp2_data = temp_outs[1]->mutable_data<T>(
        framework::make_ddim(out_dims[2]), ctx.GetPlace());
    in_datas.push_back(static_cast<const void*>(temp2_data + oc2 * h * w));

    std::vector<void*> out_datas;
    out_datas.push_back(static_cast<void*>(output_data));
    out_datas.push_back(static_cast<void*>(output_data + oc0 * h * w));
    out_datas.push_back(static_cast<void*>(temp2_data));
    out_datas.push_back(
        static_cast<void*>(output_data + (oc0 + oc1 + oc2) * h * w));

    for (int i = 0; i < 4; ++i) {
C
chengduo 已提交
225
      auto func = [&](void* cudnn_workspace) {
226 227 228 229 230 231 232 233
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnConvolutionBiasActivationForward(
                handle, &alpha, in_desc[i], in_datas[i], filter_desc[i],
                static_cast<const void*>(filters[i]->data<T>()), conv_desc[i],
                algo[i], cudnn_workspace, workspace_size_in_bytes, &beta,
                out_desc[i], out_datas[i], bias_desc[i],
                static_cast<const void*>(bias[i]->data<T>()), cudnn_act_desc,
                out_desc[i], out_datas[i]));
C
chengduo 已提交
234 235 236
      };
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
      workspace_handle.RunFunc(func, workspace_size_in_bytes);
Q
qingqing01 已提交
237 238 239 240
    }

    cudnnTensorDescriptor_t x_desc;
    cudnnTensorDescriptor_t y_desc;
241 242 243 244 245
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnCreateTensorDescriptor(&x_desc));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnCreateTensorDescriptor(&y_desc));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
246
        x_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[2].data()));
247
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
248
        y_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[3].data()));
249
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnTransformTensor(
Q
qingqing01 已提交
250 251 252 253 254
        handle, CudnnDataType<T>::kOne(), x_desc,
        static_cast<const void*>(out_datas[2]), CudnnDataType<T>::kZero(),
        y_desc, static_cast<void*>(output_data + (oc0 + oc1) * h * w)));

    for (int i = 0; i < 4; ++i) {
255
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
256
          platform::dynload::cudnnDestroyTensorDescriptor(in_desc[i]));
257
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
258
          platform::dynload::cudnnDestroyTensorDescriptor(out_desc[i]));
259
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
260
          platform::dynload::cudnnDestroyFilterDescriptor(filter_desc[i]));
261
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
262
          platform::dynload::cudnnDestroyTensorDescriptor(bias_desc[i]));
263
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
264 265
          platform::dynload::cudnnDestroyConvolutionDescriptor(conv_desc[i]));
    }
266 267 268 269
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDestroyTensorDescriptor(x_desc));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDestroyTensorDescriptor(y_desc));
Q
qingqing01 已提交
270 271 272 273 274 275 276
  }
};
#endif

}  // namespace operators
}  // namespace paddle

277
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
278 279 280 281 282
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_inception_fusion,
                        ops::CUDNNConvInceptionFusionOpKernel<float>,
                        ops::CUDNNConvInceptionFusionOpKernel<double>);
#endif