transform_test.cu 3.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14 15

#include <gtest/gtest.h>
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/hostdevice.h"
#include "paddle/fluid/platform/transform.h"
Y
Yu Yang 已提交
20

21 22
namespace {

Y
Yu Yang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
template <typename T>
class Scale {
 public:
  explicit Scale(const T& scale) : scale_(scale) {}
  HOSTDEVICE T operator()(const T& a) const { return a * scale_; }

 private:
  T scale_;
};

template <typename T>
class Multiply {
 public:
  HOSTDEVICE T operator()(const T& a, const T& b) const { return a * b; }
};

39 40 41 42 43 44 45 46 47 48 49 50
}  // namespace

using paddle::memory::Alloc;
using paddle::memory::Copy;

using paddle::platform::CPUPlace;
using paddle::platform::CUDAPlace;
using paddle::platform::CPUDeviceContext;
using paddle::platform::CUDADeviceContext;

using paddle::platform::Transform;

Y
Yu Yang 已提交
51
TEST(Transform, CPUUnary) {
Y
Yu Yang 已提交
52
  CPUDeviceContext ctx;
Y
Yu Yang 已提交
53
  float buf[4] = {0.1, 0.2, 0.3, 0.4};
54
  Transform<CPUDeviceContext> trans;
55
  trans(ctx, buf, buf + 4, buf, Scale<float>(10));
Y
Yu Yang 已提交
56 57 58 59 60 61
  for (int i = 0; i < 4; ++i) {
    ASSERT_NEAR(buf[i], static_cast<float>(i + 1), 1e-5);
  }
}

TEST(Transform, GPUUnary) {
D
dzhwinter 已提交
62
  CUDAPlace gpu0(0);
Y
Yu Yang 已提交
63
  CUDADeviceContext ctx(gpu0);
Y
Yu Yang 已提交
64
  float cpu_buf[4] = {0.1, 0.2, 0.3, 0.4};
65 66
  auto gpu_allocation = Alloc(gpu0, sizeof(float) * 4);
  float* gpu_buf = static_cast<float*>(gpu_allocation->ptr());
D
dzhwinter 已提交
67
  Copy(gpu0, gpu_buf, CPUPlace(), cpu_buf, sizeof(cpu_buf), ctx.stream());
68
  Transform<CUDADeviceContext> trans;
69
  trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, Scale<float>(10));
Y
Yu Yang 已提交
70
  ctx.Wait();
D
dzhwinter 已提交
71
  Copy(CPUPlace(), cpu_buf, gpu0, gpu_buf, sizeof(cpu_buf), ctx.stream());
Y
Yu Yang 已提交
72 73 74 75 76 77 78
  for (int i = 0; i < 4; ++i) {
    ASSERT_NEAR(cpu_buf[i], static_cast<float>(i + 1), 1e-5);
  }
}

TEST(Transform, CPUBinary) {
  int buf[4] = {1, 2, 3, 4};
79
  Transform<CPUDeviceContext> trans;
80 81
  CPUDeviceContext ctx;
  trans(ctx, buf, buf + 4, buf, buf, Multiply<int>());
Y
Yu Yang 已提交
82 83 84 85 86 87 88
  for (int i = 0; i < 4; ++i) {
    ASSERT_EQ((i + 1) * (i + 1), buf[i]);
  }
}

TEST(Transform, GPUBinary) {
  int buf[4] = {1, 2, 3, 4};
D
dzhwinter 已提交
89
  CUDAPlace gpu0(0);
Y
Yu Yang 已提交
90
  CUDADeviceContext ctx(gpu0);
91 92
  auto gpu_allocation = Alloc(gpu0, sizeof(buf));
  int* gpu_buf = static_cast<int*>(gpu_allocation->ptr());
D
dzhwinter 已提交
93
  Copy(gpu0, gpu_buf, CPUPlace(), buf, sizeof(buf), ctx.stream());
94
  Transform<CUDADeviceContext> trans;
95
  trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, gpu_buf, Multiply<int>());
Y
Yu Yang 已提交
96
  ctx.Wait();
D
dzhwinter 已提交
97
  Copy(CPUPlace(), buf, gpu0, gpu_buf, sizeof(buf), ctx.stream());
Y
Yu Yang 已提交
98 99 100
  for (int i = 0; i < 4; ++i) {
    ASSERT_EQ((i + 1) * (i + 1), buf[i]);
  }
101
}