/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/memory/memory.h" #include "paddle/fluid/platform/hostdevice.h" #include "paddle/fluid/platform/transform.h" namespace { template class Scale { public: explicit Scale(const T& scale) : scale_(scale) {} HOSTDEVICE T operator()(const T& a) const { return a * scale_; } private: T scale_; }; template class Multiply { public: HOSTDEVICE T operator()(const T& a, const T& b) const { return a * b; } }; } // namespace using paddle::memory::Alloc; using paddle::memory::Copy; using paddle::platform::CPUPlace; using paddle::platform::CUDAPlace; using paddle::platform::CPUDeviceContext; using paddle::platform::CUDADeviceContext; using paddle::platform::Transform; TEST(Transform, CPUUnary) { CPUDeviceContext ctx; float buf[4] = {0.1, 0.2, 0.3, 0.4}; Transform trans; trans(ctx, buf, buf + 4, buf, Scale(10)); for (int i = 0; i < 4; ++i) { ASSERT_NEAR(buf[i], static_cast(i + 1), 1e-5); } } TEST(Transform, GPUUnary) { CUDAPlace gpu0(0); CUDADeviceContext ctx(gpu0); float cpu_buf[4] = {0.1, 0.2, 0.3, 0.4}; auto gpu_allocation = Alloc(gpu0, sizeof(float) * 4); float* gpu_buf = static_cast(gpu_allocation->ptr()); Copy(gpu0, gpu_buf, CPUPlace(), cpu_buf, sizeof(cpu_buf), ctx.stream()); Transform trans; trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, Scale(10)); ctx.Wait(); Copy(CPUPlace(), cpu_buf, gpu0, gpu_buf, sizeof(cpu_buf), ctx.stream()); for (int i = 0; i < 4; ++i) { ASSERT_NEAR(cpu_buf[i], static_cast(i + 1), 1e-5); } } TEST(Transform, CPUBinary) { int buf[4] = {1, 2, 3, 4}; Transform trans; CPUDeviceContext ctx; trans(ctx, buf, buf + 4, buf, buf, Multiply()); for (int i = 0; i < 4; ++i) { ASSERT_EQ((i + 1) * (i + 1), buf[i]); } } TEST(Transform, GPUBinary) { int buf[4] = {1, 2, 3, 4}; CUDAPlace gpu0(0); CUDADeviceContext ctx(gpu0); auto gpu_allocation = Alloc(gpu0, sizeof(buf)); int* gpu_buf = static_cast(gpu_allocation->ptr()); Copy(gpu0, gpu_buf, CPUPlace(), buf, sizeof(buf), ctx.stream()); Transform trans; trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, gpu_buf, Multiply()); ctx.Wait(); Copy(CPUPlace(), buf, gpu0, gpu_buf, sizeof(buf), ctx.stream()); for (int i = 0; i < 4; ++i) { ASSERT_EQ((i + 1) * (i + 1), buf[i]); } }