top_k_function_cuda.h 38.9 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
W
wawltor 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <stdio.h>
17

W
wawltor 已提交
18 19
#include <cstdio>
#include <vector>
20
#ifdef __NVCC__
W
wawltor 已提交
21
#include "cub/cub.cuh"
22 23 24 25
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
#endif
26
#include "paddle/phi/backends/gpu/gpu_device_function.h"
27
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
28
#include "paddle/phi/backends/gpu/gpu_primitives.h"
29
#include "paddle/phi/common/bfloat16.h"
30 31 32 33
#include "paddle/phi/common/float16.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
W
wawltor 已提交
34

35
#define FINAL_MASK 0xffffffff
36 37 38 39 40 41 42 43 44 45 46
#define WARP_SIZE 32
#define MAX_NUM_THREADS 1024

inline static size_t divide_round_up(size_t n, size_t q) {
  return n % q == 0 ? n / q : n / q + 1;
}

inline static size_t round_up(size_t n, size_t q) {
  return divide_round_up(n, q) * q;
}

47 48 49 50
#ifdef __HIPCC__
namespace rocprim {
namespace detail {
template <>
51 52
struct radix_key_codec_base<phi::dtype::float16>
    : radix_key_codec_integral<phi::dtype::float16, uint16_t> {};
53 54 55 56

template <>
struct radix_key_codec_base<phi::dtype::bfloat16>
    : radix_key_codec_integral<phi::dtype::bfloat16, uint16_t> {};
57 58 59 60 61 62 63 64 65

#if ROCM_VERSION_MAJOR >= 5 && ROCM_VERSION_MINOR >= 4
template <>
struct float_bit_mask<phi::dtype::float16> : float_bit_mask<rocprim::half> {};

template <>
struct float_bit_mask<phi::dtype::bfloat16>
    : float_bit_mask<rocprim::bfloat16> {};
#endif
66 67 68 69
}  // namespace detail
}  // namespace rocprim
namespace cub = hipcub;
#else
W
wawltor 已提交
70 71 72
// set cub base traits in order to handle float16
namespace cub {
template <>
73 74
struct NumericTraits<phi::dtype::float16>
    : BaseTraits<FLOATING_POINT, true, false, uint16_t, phi::dtype::float16> {};
75 76 77 78 79 80

template <>
struct NumericTraits<phi::dtype::bfloat16>
    : BaseTraits<FLOATING_POINT, true, false, uint16_t, phi::dtype::bfloat16> {
};

W
wawltor 已提交
81
}  // namespace cub
82
#endif
W
wawltor 已提交
83

84 85
namespace phi {
namespace funcs {
W
wawltor 已提交
86

87
using Tensor = phi::DenseTensor;
W
wawltor 已提交
88

89 90
inline void GetDims(
    const phi::DDim& dim, int axis, int* pre, int* n, int* post) {
91 92 93 94 95 96 97 98 99 100 101
  *pre = 1;
  *post = 1;
  *n = dim[axis];
  for (int i = 0; i < axis; ++i) {
    (*pre) *= dim[i];
  }
  for (int i = axis + 1; i < dim.size(); ++i) {
    (*post) *= dim[i];
  }
}

W
wawltor 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
struct SegmentOffsetIter {
  EIGEN_DEVICE_FUNC
  explicit SegmentOffsetIter(int num_cols) : num_cols_(num_cols) {}

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator()(int idx) const {
    return idx * num_cols_;
  }

  int num_cols_;
};

// Iter using into a column
struct ColumnIndexIter {
  explicit ColumnIndexIter(int num_cols) : num_cols_(num_cols) {}

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator()(
      const Eigen::array<int, 1>& ix) const {
    return ix[0] % num_cols_;
  }

  int num_cols_;
};

inline static int GetDesiredBlockDim(int dim) {
  if (dim > 128) {
    return 256;
  } else if (dim > 64) {
    return 128;
  } else if (dim > 32) {
    return 64;
  } else {
    return 32;
  }
}

137 138 139 140 141 142 143 144
inline static int getMaxLength(int k) {
  if (k / 5 < 1) {
    return 1;
  } else if (k / 5 >= 1) {
    return min(k / 5, 5);
  }
}

W
wawltor 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
template <typename T>
__global__ void InitIndex(T* indices, T num_rows, T num_cols) {
  int col_id = threadIdx.x;
  int row_id = blockIdx.x;

  for (int64_t j = row_id; j < num_rows; j += gridDim.x) {
    for (int64_t i = col_id; i < num_cols; i += blockDim.x) {
      indices[j * num_cols + i] = i;
    }
  }
}

template <typename T>
struct Pair {
  __device__ __forceinline__ Pair() {}
  __device__ __forceinline__ Pair(T value, int64_t id) : v(value), id(id) {}

  __device__ __forceinline__ void set(T value, int64_t id) {
    v = value;
    id = id;
  }

  __device__ __forceinline__ void operator=(const Pair<T>& in) {
    v = in.v;
    id = in.id;
  }

  __device__ __forceinline__ bool operator<(const T value) const {
    return (v < value);
  }

  __device__ __forceinline__ bool operator>(const T value) const {
    return (v > value);
  }
  __device__ __forceinline__ bool operator<(const Pair<T>& in) const {
    return (v < in.v) || ((v == in.v) && (id > in.id));
  }

  __device__ __forceinline__ bool operator>(const Pair<T>& in) const {
    return (v > in.v) || ((v == in.v) && (id < in.id));
  }

  T v;
  int64_t id;
};

template <typename T>
192 193 194 195
__device__ __forceinline__ void AddTo(Pair<T> topk[],
                                      const Pair<T>& p,
                                      int beam_size,
                                      const bool& largest) {
W
wawltor 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  for (int k = beam_size - 2; k >= 0; k--) {
    if (largest) {
      if (topk[k] < p) {
        topk[k + 1] = topk[k];
      } else {
        topk[k + 1] = p;
        return;
      }
    } else {
      if (topk[k] > p) {
        topk[k + 1] = topk[k];
      } else {
        topk[k + 1] = p;
        return;
      }
    }
  }
  topk[0] = p;
}

template <typename T, int BlockSize>
217 218 219 220 221
__device__ __forceinline__ void GetTopK(Pair<T> topk[],
                                        const T* src,
                                        int idx,
                                        int dim,
                                        int beam_size,
W
wawltor 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
                                        const bool& largest) {
  while (idx < dim) {
    if (largest) {
      if (topk[beam_size - 1] < src[idx]) {
        Pair<T> tmp(src[idx], idx);
        AddTo<T>(topk, tmp, beam_size, largest);
      }
    } else {
      if (topk[beam_size - 1] > src[idx]) {
        Pair<T> tmp(src[idx], idx);
        AddTo<T>(topk, tmp, beam_size, largest);
      }
    }
    idx += BlockSize;
  }
}

template <typename T, int BlockSize>
240 241 242 243 244 245 246
__device__ __forceinline__ void GetTopK(Pair<T> topk[],
                                        const T* src,
                                        int idx,
                                        int dim,
                                        const Pair<T>& max,
                                        int beam_size,
                                        const bool& largest) {
W
wawltor 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
  while (idx < dim) {
    if (largest) {
      if (topk[beam_size - 1] < src[idx]) {
        Pair<T> tmp(src[idx], idx);
        if (tmp < max) {
          AddTo<T>(topk, tmp, beam_size, largest);
        }
      }
    } else {
      if (topk[beam_size - 1] > src[idx]) {
        Pair<T> tmp(src[idx], idx);
        if (tmp > max) {
          AddTo<T>(topk, tmp, beam_size, largest);
        }
      }
    }
    idx += BlockSize;
  }
}

template <typename T, int MaxLength, int BlockSize>
268 269 270 271 272 273 274 275 276 277
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[],
                                              int* beam,
                                              int beam_size,
                                              const T* src,
                                              bool* firstStep,
                                              bool* is_empty,
                                              Pair<T>* max,
                                              int dim,
                                              const int tid,
                                              bool largest) {
W
wawltor 已提交
278 279 280 281 282 283 284 285 286 287
  if (*beam > 0) {
    int length = (*beam) < beam_size ? *beam : beam_size;
    if (*firstStep) {
      *firstStep = false;
      GetTopK<T, BlockSize>(topk, src, tid, dim, length, largest);
    } else {
      for (int k = 0; k < MaxLength; k++) {
        if (k < MaxLength - (*beam)) {
          topk[k] = topk[k + *beam];
        } else {
288 289 290 291 292
          if (largest) {
            topk[k].set(-static_cast<T>(INFINITY), -1);
          } else {
            topk[k].set(static_cast<T>(INFINITY), -1);
          }
W
wawltor 已提交
293 294 295
        }
      }
      if (!(*is_empty)) {
296 297
        GetTopK<T, BlockSize>(
            topk + MaxLength - *beam, src, tid, dim, *max, length, largest);
W
wawltor 已提交
298 299 300 301
      }
    }

    *max = topk[MaxLength - 1];
302
    if ((*max).id == -1) *is_empty = true;
W
wawltor 已提交
303 304 305 306
    *beam = 0;
  }
}

307 308 309 310 311 312
template <typename T>
__forceinline__ __device__ Pair<T> WarpReduce(Pair<T> input,
                                              const bool& largest) {
  if (largest) {
#pragma unroll
    for (int offset = 16; offset > 0; offset >>= 1) {
313 314 315 316
      T tmp_val =
          phi::backends::gpu::CudaShuffleDownSync(FINAL_MASK, input.v, offset);
      int tmp_id =
          phi::backends::gpu::CudaShuffleDownSync(FINAL_MASK, input.id, offset);
317 318 319 320 321 322 323 324
      if (input.v < tmp_val || (input.v == tmp_val && input.id > tmp_id)) {
        input.v = tmp_val;
        input.id = tmp_id;
      }
    }
  } else {
#pragma unroll
    for (int offset = 16; offset > 0; offset >>= 1) {
325 326 327 328
      T tmp_val =
          phi::backends::gpu::CudaShuffleDownSync(FINAL_MASK, input.v, offset);
      int tmp_id =
          phi::backends::gpu::CudaShuffleDownSync(FINAL_MASK, input.id, offset);
329 330 331 332 333 334 335 336 337
      if (input.v > tmp_val || (input.v == tmp_val && input.id > tmp_id)) {
        input.v = tmp_val;
        input.id = tmp_id;
      }
    }
  }
  return input;
}

W
wawltor 已提交
338
template <typename T, int MaxLength, int BlockSize>
339
__device__ __forceinline__ void BlockReduce(Pair<T> shared_max[],
340 341 342 343 344 345
                                            Pair<T> topk[],
                                            T** topVal,
                                            int64_t** topIds,
                                            int* beam,
                                            int* k,
                                            const int tid,
346 347
                                            const int wid,
                                            const int lane,
W
wawltor 已提交
348 349 350
                                            const bool& largest) {
  while (true) {
    __syncthreads();
351 352 353 354 355
    Pair<T> input_now = topk[0];
    input_now = WarpReduce(input_now, largest);

    if (lane == 0) {
      shared_max[wid] = input_now;
W
wawltor 已提交
356 357
    }
    __syncthreads();
358 359 360 361 362 363 364 365 366 367 368 369
    if (largest) {
      input_now = (tid < BlockSize / 32)
                      ? shared_max[lane]
                      : Pair<T>(-static_cast<T>(INFINITY), -1);
    } else {
      input_now = (tid < BlockSize / 32)
                      ? shared_max[lane]
                      : Pair<T>(static_cast<T>(INFINITY), -1);
    }
    if (wid == 0) {
      input_now = WarpReduce(input_now, largest);
      if (lane == 0) shared_max[0] = input_now;
W
wawltor 已提交
370 371 372 373
    }
    __syncthreads();

    if (tid == 0) {
374 375
      **topVal = input_now.v;
      **topIds = input_now.id;
W
wawltor 已提交
376 377 378
      (*topVal)++;
      (*topIds)++;
    }
379 380 381
    int tid_max = shared_max[0].id % BlockSize;
    if (tid == tid_max) {
      (*beam)++;
W
wawltor 已提交
382
      if (*beam < MaxLength) {
383
        topk[0] = topk[*beam];
W
wawltor 已提交
384 385
      }
    }
386 387
    if (--(*k) == 0) break;

388 389 390
    unsigned mask = 0u;
    CREATE_SHFL_MASK(mask, true);
    if (tid_max / 32 == wid) {
391 392
      if (phi::backends::gpu::CudaShuffleSync(mask, *beam, tid_max % 32, 32) ==
          MaxLength)
393
        break;
W
wawltor 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407
    }
  }
}

/**
 * Each block compute one sample.
 * In a block:
 * 1. every thread get top MaxLength value;
 * 2. merge to sh_topk, block reduce and get max value;
 * 3. go to the second setp, until one thread's topk value is null;
 * 4. go to the first setp, until get the topk value.
 */

template <typename T, int MaxLength, int BlockSize>
408 409 410 411 412 413 414 415 416 417
__global__ void KeMatrixTopK(T* output,
                             int output_stride,
                             int64_t* indices,
                             const T* src,
                             int lds,
                             int dim,
                             int k,
                             int grid_dim,
                             int num,
                             bool largest = true) {
W
wawltor 已提交
418
  const int tid = threadIdx.x;
419 420
  const int wid = tid / 32;
  const int lane = tid % 32;
W
wawltor 已提交
421 422 423
  const int bid = blockIdx.x;
  for (int i = bid; i < num; i += grid_dim) {
    int top_num = k;
424
    __shared__ Pair<T> shared_max[BlockSize / 32];
W
wawltor 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    T* out = output + i * output_stride;
    int64_t* inds = indices + i * k;
    Pair<T> topk[MaxLength];
    int beam = MaxLength;
    Pair<T> max;
    bool is_empty = false;
    bool firststep = true;

    for (int j = 0; j < MaxLength; j++) {
      if (largest) {
        topk[j].set(-static_cast<T>(INFINITY), -1);
      } else {
        topk[j].set(static_cast<T>(INFINITY), -1);
      }
    }
    while (top_num) {
441 442 443 444 445 446 447 448 449 450
      ThreadGetTopK<T, MaxLength, BlockSize>(topk,
                                             &beam,
                                             k,
                                             src + i * lds,
                                             &firststep,
                                             &is_empty,
                                             &max,
                                             dim,
                                             tid,
                                             largest);
451
      BlockReduce<T, MaxLength, BlockSize>(shared_max,
452 453 454 455 456 457
                                           topk,
                                           &out,
                                           &inds,
                                           &beam,
                                           &top_num,
                                           tid,
458 459
                                           wid,
                                           lane,
460
                                           largest);
W
wawltor 已提交
461 462 463 464
    }
  }
}

465
/*---------------------------Radix TopK Begin------------------*/
466
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 9000
467 468 469 470 471 472 473 474 475 476 477
constexpr int RADIX_BITS = 2;  // digits are base-(2 ^ RADIX_BITS)
constexpr int RADIX_SIZE = 4;  // 2 ^ RADIX_BITS
constexpr int RADIX_MASK = (RADIX_SIZE - 1);

/*---------------------------Helper Structs------------------*/
template <typename T>
struct Bitfield {};

template <>
struct Bitfield<unsigned int> {
  static __device__ __forceinline__ unsigned int GetBitfield(unsigned int val,
478 479
                                                             int pos,
                                                             int len) {
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    unsigned int ret;
    asm("bfe.u32 %0, %1, %2, %3;" : "=r"(ret) : "r"(val), "r"(pos), "r"(len));
    return ret;
  }

  static __device__ __forceinline__ unsigned int SetBitfield(
      unsigned int val, unsigned int to_insert, int pos, int len) {
    unsigned int ret;
    asm("bfi.b32 %0, %1, %2, %3, %4;"
        : "=r"(ret)
        : "r"(to_insert), "r"(val), "r"(pos), "r"(len));
    return ret;
  }
};

template <>
struct Bitfield<uint64_t> {
497 498
  static __device__ __forceinline__ uint64_t GetBitfield(uint64_t val,
                                                         int pos,
499 500 501 502 503 504 505 506
                                                         int len) {
    uint64_t ret;
    asm("bfe.u64 %0, %1, %2, %3;" : "=l"(ret) : "l"(val), "r"(pos), "r"(len));
    return ret;
  }

  static __device__ __forceinline__ uint64_t SetBitfield(uint64_t val,
                                                         uint64_t to_insert,
507 508
                                                         int pos,
                                                         int len) {
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
    uint64_t ret;
    asm("bfi.b64 %0, %1, %2, %3, %4;"
        : "=l"(ret)
        : "l"(to_insert), "l"(val), "r"(pos), "r"(len));
    return ret;
  }
};

template <typename T>
struct RadixTypeConfig {};

template <>
struct RadixTypeConfig<float> {
  typedef uint32_t RadixType;

  static inline __device__ RadixType Convert(float v) {
    RadixType x = __float_as_int(v);
    RadixType mask = (x & 0x80000000) ? 0xffffffff : 0x80000000;

    return (v == v) ? (x ^ mask) : 0xffffffff;
  }

  static inline __device__ float Deconvert(RadixType v) {
    RadixType mask = (v & 0x80000000) ? 0x80000000 : 0xffffffff;

    return __int_as_float(v ^ mask);
  }
};

template <>
struct RadixTypeConfig<double> {
  typedef uint64_t RadixType;

  static inline __device__ RadixType Convert(double v) {
    RadixType x = __double_as_longlong(v);
    RadixType mask = -((x >> 63)) | 0x8000000000000000;
    return (v == v) ? (x ^ mask) : 0xffffffffffffffff;
  }

  static inline __device__ double Deconvert(RadixType v) {
    RadixType mask = ((v >> 63) - 1) | 0x8000000000000000;
    return __longlong_as_double(v ^ mask);
  }
};

template <>
struct RadixTypeConfig<int32_t> {
  typedef uint32_t RadixType;

  static inline __device__ RadixType Convert(int32_t v) {
    static_assert(sizeof(int) == 4, "");
    return 2147483648u + v;
  }

  static inline __device__ int32_t Deconvert(RadixType v) {
    return v - 2147483648u;
  }
};

template <>
struct RadixTypeConfig<int64_t> {
  typedef uint64_t RadixType;

  static inline __device__ RadixType Convert(int64_t v) {
    static_assert(sizeof(int64_t) == 8, "");
    return 9223372036854775808ull + v;
  }

  static inline __device__ int64_t Deconvert(RadixType v) {
    return v - 9223372036854775808ull;
  }
};

template <>
583
struct RadixTypeConfig<phi::dtype::float16> {
584 585
  typedef uint32_t RadixType;

586
  static inline __device__ RadixType Convert(phi::dtype::float16 v) {
587
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
588 589 590 591
    half v_h = v.to_half();
    RadixType x = __half_as_ushort(v_h);
    RadixType mask = (x & 0x00008000) ? 0x0000ffff : 0x00008000;
    return (v_h == v_h) ? (x ^ mask) : 0xffff;
592 593 594 595
#else
    assert(false);
    return 0u;
#endif
596 597
  }

598
  static inline __device__ phi::dtype::float16 Deconvert(RadixType v) {
599
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
600
    RadixType mask = (v & 0x00008000) ? 0x00008000 : 0x0000ffff;
601
    return static_cast<phi::dtype::float16>(__ushort_as_half(v ^ mask));
602 603
#else
    assert(false);
604
    return static_cast<phi::dtype::float16>(0);
605
#endif
606 607 608
  }
};

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
template <>
struct RadixTypeConfig<phi::dtype::bfloat16> {
  typedef uint32_t RadixType;

  static inline __device__ RadixType Convert(phi::dtype::bfloat16 v) {
    RadixType x = v.x;
    RadixType mask = (x & 0x00008000) ? 0x0000ffff : 0x00008000;
    return (v == v) ? (x ^ mask) : 0xffff;
  }

  static inline __device__ phi::dtype::bfloat16 Deconvert(RadixType v) {
    RadixType mask = (v & 0x00008000) ? 0x00008000 : 0x0000ffff;
    phi::dtype::bfloat16 r;
    r.x = (v ^ mask);
    return r;
  }
};

627 628 629 630 631 632 633 634 635 636 637 638 639 640
/*---------------------------Helper Functions------------------*/
__device__ __forceinline__ int GetLaneId() {
  int lane_id;
  asm("mov.s32 %0, %%laneid;" : "=r"(lane_id));
  return lane_id;
}

__device__ __forceinline__ unsigned GetLaneMaskLe() {
  unsigned mask;
  asm("mov.u32 %0, %%lanemask_le;" : "=r"(mask));
  return mask;
}

template <typename T, bool KillDependency, class Function>
641 642 643
__device__ void InclusiveBinaryPrefixScan(T* shared_mem,
                                          bool in,
                                          T* out,
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
                                          Function func) {
  T vote = __ballot_sync(__activemask(), in);
  T index = __popc(GetLaneMaskLe() & vote);
  T carry = __popc(vote);

  int warp = threadIdx.x / 32;

  if (GetLaneId() == 0) {
    shared_mem[warp] = carry;
  }

  __syncthreads();

  if (threadIdx.x == 0) {
    int current = 0;
    for (int i = 0; i < blockDim.x / 32; ++i) {
      T v = shared_mem[i];
      shared_mem[i] = func(shared_mem[i], current);
      current = func(current, v);
    }
  }

  __syncthreads();

  if (warp >= 1) {
    index = func(index, shared_mem[warp - 1]);
  }

  *out = index;

  if (KillDependency) {
    __syncthreads();
  }
}

template <typename T, bool KillDependency, class Function>
680 681
__device__ void ExclusiveBinaryPrefixScan(
    T* shared_mem, bool in, T* out, T* carry, Function func) {
682 683 684 685 686 687 688 689 690 691 692 693
  InclusiveBinaryPrefixScan<T, false, Function>(shared_mem, in, out, func);

  *out -= (T)in;

  *carry = shared_mem[(blockDim.x + 31) / 32 - 1];

  if (KillDependency) {
    __syncthreads();
  }
}

template <typename T, typename RadixType>
694 695 696 697 698
__device__ T FindPattern(const T* input,
                         T* shared_mem,
                         int slice_size,
                         RadixType desired,
                         RadixType desired_mask) {
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  if (threadIdx.x < 2) {
    shared_mem[threadIdx.x] = static_cast<T>(0);
  }
  __syncthreads();

  int block_dim = static_cast<int>(blockDim.x);
  int loop = ((slice_size + block_dim - 1) / block_dim * block_dim);
  for (int i = threadIdx.x; i < loop; i += blockDim.x) {
    bool valid = (i < slice_size);
    T v = valid ? input[i] : static_cast<T>(0);

    if (valid && ((RadixTypeConfig<T>::Convert(v) & desired_mask) == desired)) {
      shared_mem[0] = static_cast<T>(1);
      shared_mem[1] = v;
    }

    __syncthreads();

    T found = shared_mem[0];
    T val = shared_mem[1];

    __syncthreads();

    if (found != static_cast<T>(0)) {
      return val;
    }
  }

  assert(false);
  return static_cast<T>(0);
}

template <typename T, typename RadixType, int RadixSize, int RadixBits>
732 733 734 735 736 737
__device__ void RadixCountUsingMask(const T* input,
                                    int counts[RadixSize],
                                    int* shared_mem,
                                    RadixType desired,
                                    RadixType desired_mask,
                                    int radix_digit_pos,
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
                                    int slice_size) {
#pragma unroll
  for (int i = 0; i < RadixSize; ++i) {
    counts[i] = 0;
  }

  if (threadIdx.x < RadixSize) {
    shared_mem[threadIdx.x] = 0;
  }
  __syncthreads();

  for (int i = threadIdx.x; i < slice_size; i += blockDim.x) {
    RadixType val = RadixTypeConfig<T>::Convert(input[i]);

    bool has_val = ((val & desired_mask) == desired);
    RadixType digit_in_radix =
        Bitfield<RadixType>::GetBitfield(val, radix_digit_pos, RadixBits);

#pragma unroll
    for (uint32_t j = 0; j < RadixSize; ++j) {
      bool vote = has_val && (digit_in_radix == j);
      counts[j] += __popc(__ballot_sync(__activemask(), vote));
    }
  }

  if (GetLaneId() == 0) {
#pragma unroll
    for (uint32_t i = 0; i < RadixSize; ++i) {
766
      phi::CudaAtomicAdd(&shared_mem[i], counts[i]);
767 768 769 770 771 772 773 774 775 776 777 778 779 780
    }
  }

  __syncthreads();

#pragma unroll
  for (uint32_t i = 0; i < RadixSize; ++i) {
    counts[i] = shared_mem[i];
  }

  __syncthreads();
}

template <typename T, typename RadixType, bool Largest>
781 782
__device__ void RadixSearch(
    const T* input, int k, int slice_size, int* shared_mem, T* kth_value) {
783 784 785 786 787 788 789 790 791 792
  int counts[RADIX_SIZE];

  RadixType desired = 0;
  RadixType desired_mask = 0;

  int k_left = k;

#pragma unroll
  for (int digit_pos = sizeof(T) * 8 - RADIX_BITS; digit_pos >= 0;
       digit_pos -= RADIX_BITS) {
793 794 795 796 797 798 799
    RadixCountUsingMask<T, RadixType, RADIX_SIZE, RADIX_BITS>(input,
                                                              counts,
                                                              shared_mem,
                                                              desired,
                                                              desired_mask,
                                                              digit_pos,
                                                              slice_size);
800 801 802 803 804 805 806 807

    auto found_unique = [&](int i, int count) -> bool {
      if (count == 1 && k_left == 1) {
        desired =
            Bitfield<RadixType>::SetBitfield(desired, i, digit_pos, RADIX_BITS);
        desired_mask = Bitfield<RadixType>::SetBitfield(
            desired_mask, RADIX_MASK, digit_pos, RADIX_BITS);

808 809 810 811 812
        *kth_value = FindPattern<T, RadixType>(input,
                                               reinterpret_cast<T*>(shared_mem),
                                               slice_size,
                                               desired,
                                               desired_mask);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
        return true;
      }
      return false;
    };
    auto found_non_unique = [&](int i, int count) -> bool {
      if (count >= k_left) {
        desired =
            Bitfield<RadixType>::SetBitfield(desired, i, digit_pos, RADIX_BITS);
        desired_mask = Bitfield<RadixType>::SetBitfield(
            desired_mask, RADIX_MASK, digit_pos, RADIX_BITS);

        return true;
      }
      k_left -= count;
      return false;
    };

    if (Largest) {
// Descending order
#pragma unroll
      for (int i = RADIX_SIZE - 1; i >= 0; --i) {
        int count = counts[i];
        if (found_unique(i, count)) {
          return;
        }
        if (found_non_unique(i, count)) {
          break;
        }
      }
    } else {
// Ascending order
#pragma unroll
      for (int i = 0; i < RADIX_SIZE; ++i) {
        int count = counts[i];
        if (found_unique(i, count)) {
          return;
        }
        if (found_non_unique(i, count)) {
          break;
        }
      }
    }
  }

  *kth_value = RadixTypeConfig<T>::Deconvert(desired);
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
template <typename T>
__global__ void GatherKthValue(const T* input,
                               const int k,
                               const int64_t num_rows,
                               const int64_t num_cols,
                               T* output,
                               int64_t* indices) {
  __shared__ int shared_mem[32];
  int row =
      blockIdx.z * gridDim.y * gridDim.x + blockIdx.y * gridDim.x + blockIdx.x;
  const T* cur_input = input + row * num_cols;

  // 1. Find the k-th value
  T kth_value = static_cast<T>(0);
  RadixSearch<T, RadixTypeConfig<T>::RadixType, false>(
      cur_input, k, num_cols, shared_mem, &kth_value);
  const auto converted_kth_value = RadixTypeConfig<T>::Convert(kth_value);

  // 2. find the k-th index
  int64_t kth_index = 0;
  bool foundKValue = false;
  for (int64_t i = threadIdx.x; i < num_cols; i += blockDim.x) {
    bool inRange = (i < num_cols);
    T v = inRange ? cur_input[i] : static_cast<T>(0);
    bool isKValue =
        inRange && ((v == kth_value) || (isnan(static_cast<float>(v)) &&
                                         isnan(static_cast<float>(kth_value))));
    if (isKValue) {
      kth_index = i;
      foundKValue = true;
      break;
    }
  }

  if (foundKValue) {
    output[row] = kth_value;
    indices[row] = kth_index;
  }
}

template <typename T>
void LaunchGatherKthValue(const phi::GPUContext& dev_ctx,
                          const T* input_data,
                          const int64_t num_cols,
                          const int64_t num_rows,
                          const int k,
                          T* out_data,
                          int64_t* indices_data) {
  int num_threads = std::min(
      static_cast<int>(round_up(static_cast<int>(num_cols), WARP_SIZE)),
      MAX_NUM_THREADS);
  GatherKthValue<T><<<num_rows, num_threads, 0, dev_ctx.stream()>>>(
      input_data, k, num_rows, num_cols, out_data, indices_data);
}

915
template <typename T, bool Largest>
916 917 918 919 920 921
__global__ void RadixTopK(const T* input,
                          int k,
                          int slice_num,
                          int slice_size,
                          T* output,
                          int64_t* indices) {
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
  __shared__ int shared_mem[32];

  // 1. Find the k-th value
  T kth_value = static_cast<T>(0);
  RadixSearch<T, typename RadixTypeConfig<T>::RadixType, Largest>(
      input, k, slice_size, shared_mem, &kth_value);
  const auto converted_kth_value = RadixTypeConfig<T>::Convert(kth_value);

  // 2. Select the value strictly less/greater than kth_value and their indices
  int block_dim = static_cast<int>(blockDim.x);
  int loop = ((slice_size + block_dim - 1) / block_dim * block_dim);
  int write_start = 0;

  for (int i = threadIdx.x; i < loop; i += blockDim.x) {
    bool valid = i < slice_size;
    T v = valid ? input[i] : static_cast<T>(0);
    const auto convertd_v = RadixTypeConfig<T>::Convert(v);
    bool is_top_k;
    if (Largest) {
      is_top_k = valid && (convertd_v > converted_kth_value);
    } else {
      is_top_k = valid && (convertd_v < converted_kth_value);
    }

    int index;
    int carry;
    ExclusiveBinaryPrefixScan<int, true, kps::AddFunctor<int>>(
        shared_mem, is_top_k, &index, &carry, kps::AddFunctor<int>());
    if (is_top_k) {
      int write_index = write_start + index;
      output[write_index] = v;
      indices[write_index] = i;
    }
    write_start += carry;
  }

  // 3. Fill the rest with value == kth_value
  assert(k >= write_start);
  int remain = k - write_start;
  for (int i = threadIdx.x; i < loop; i += blockDim.x) {
    bool valid = i < slice_size;
    T v = valid ? input[i] : static_cast<T>(0);
    const auto convertd_v = RadixTypeConfig<T>::Convert(v);
    bool is_top_k = valid && (convertd_v == converted_kth_value);

    int index;
    int carry;
    ExclusiveBinaryPrefixScan<int, true, kps::AddFunctor<int>>(
        shared_mem, is_top_k, &index, &carry, kps::AddFunctor<int>());
    if (is_top_k && index < remain) {
      int write_index = write_start + index;
      assert(write_index < k);
      output[write_index] = v;
      indices[write_index] = i;
    }

    if (carry >= remain) {
      break;
    }

    remain -= carry;
    write_start += carry;
  }
}
#endif
/*---------------------------Radix TopK End------------------*/

W
wawltor 已提交
989
template <typename T, int MaxLength, int BlockSize>
990 991 992 993 994 995
__global__ void AssignGrad(T* x_grad,
                           const int64_t* indices,
                           const T* out_grad,
                           size_t rows,
                           size_t cols,
                           size_t k) {
W
wawltor 已提交
996 997 998 999
  for (size_t i = 0; i < rows; ++i) {
    for (size_t j = 0; j < cols; ++j) {
      x_grad[i * cols + j] = 0;
    }
W
wawltor 已提交
1000
    __syncthreads();
W
wawltor 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009
    for (size_t j = 0; j < k; ++j) {
      size_t idx = indices[i * k + j];
      x_grad[i * cols + idx] = out_grad[i * k + j];
    }
  }
}

// the grad assign with the axis
template <typename T>
1010 1011 1012 1013 1014 1015 1016
__global__ void AssignGradWithAxis(const T* grad_out,
                                   const int64_t* indices,
                                   T* grad_in,
                                   int pre,
                                   int post,
                                   int raw_height,
                                   int k) {
W
wawltor 已提交
1017 1018
  // raw_height is the length of topk axis
  for (int i = blockIdx.x; i < pre; i += gridDim.x) {
W
wawltor 已提交
1019 1020
    int base_index = i * post * k;
    int base_grad = i * post * raw_height;
W
wawltor 已提交
1021 1022 1023
    for (int j = threadIdx.x; j < raw_height * post; j += blockDim.x) {
      grad_in[base_grad + j] = static_cast<T>(0);
    }
W
wawltor 已提交
1024
    __syncthreads();
W
wawltor 已提交
1025
    for (int j = threadIdx.x; j < k * post; j += blockDim.x) {
W
wawltor 已提交
1026 1027 1028
      int64_t idx_ij = indices[base_index + j];
      int64_t in_ij = base_grad + (idx_ij * post) + (j % post);
      grad_in[in_ij] = grad_out[base_index + j];
W
wawltor 已提交
1029 1030 1031 1032 1033
    }
  }
}
// use the radix sort for the topk
template <typename T>
L
Leo Chen 已提交
1034
bool SortTopk(const phi::GPUContext& ctx,
1035
              const phi::DenseTensor* input_tensor,
1036 1037 1038
              const int64_t num_cols,
              const int64_t num_rows,
              const int k,
1039 1040
              phi::DenseTensor* out_tensor,
              phi::DenseTensor* indices_tensor,
W
wawltor 已提交
1041 1042 1043 1044 1045
              bool largest = true) {
  auto cu_stream = ctx.stream();

  Tensor input_indices;
  const std::vector<int64_t> dims = {num_rows, num_cols};
1046
  auto dim = phi::make_ddim(dims);
W
wawltor 已提交
1047
  input_indices.Resize(dim);
1048
  ctx.template Alloc<int64_t>(&input_indices);
W
wawltor 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
  size_t temp_storage_bytes = -1;

  auto ComputeBlockSize = [](int col) {
    if (col > 512)
      return 1024;
    else if (col > 256 && col <= 512)
      return 512;
    else if (col > 128 && col <= 256)
      return 256;
    else if (col > 64 && col <= 128)
      return 128;
    else
      return 64;
  };
  int block_size = ComputeBlockSize(num_cols);

W
Wilber 已提交
1065
  unsigned int maxGridDimX = ctx.GetCUDAMaxGridDimSize()[0];
W
wawltor 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
  // actually, int num_rows < max_grid_size
  unsigned int grid_size = num_rows < maxGridDimX
                               ? static_cast<unsigned int>(num_rows)
                               : maxGridDimX;
  // Init a index array
  InitIndex<int64_t><<<grid_size, block_size, 0, cu_stream>>>(
      input_indices.data<int64_t>(), num_rows, num_cols);

  // create iter for counting input
  cub::CountingInputIterator<int64_t> counting_iter(0);
  // segment_offset is used for move to next row
1077 1078
  cub::TransformInputIterator<int64_t,
                              SegmentOffsetIter,
W
wawltor 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
                              cub::CountingInputIterator<int64_t>>
      segment_offsets_t(counting_iter, SegmentOffsetIter(num_cols));

  T* sorted_values_ptr;
  int64_t* sorted_indices_ptr;

  Tensor temp_values;
  Tensor temp_indices;

  const T* input = input_tensor->data<T>();
  T* values = out_tensor->data<T>();
1090
  int64_t* indices = ctx.template Alloc<int64_t>(indices_tensor);
W
wawltor 已提交
1091 1092 1093 1094 1095 1096 1097 1098

  if (k == num_cols) {
    // Doing a full sort.
    sorted_values_ptr = values;
    sorted_indices_ptr = indices;
  } else {
    temp_values.Resize(dim);
    temp_indices.Resize(dim);
1099 1100
    sorted_values_ptr = ctx.template Alloc<T>(&temp_values);
    sorted_indices_ptr = ctx.template Alloc<int64_t>(&temp_indices);
W
wawltor 已提交
1101 1102 1103 1104 1105 1106
  }

  // Get temp storage buffer size, maybe can allocate a fixed buffer to save
  // time.
  if (largest) {
    auto err = cub::DeviceSegmentedRadixSort::SortPairsDescending(
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
        nullptr,
        temp_storage_bytes,
        input,
        sorted_values_ptr,
        input_indices.data<int64_t>(),
        sorted_indices_ptr,
        num_cols * num_rows,
        num_rows,
        segment_offsets_t,
        segment_offsets_t + 1,
        0,
        sizeof(T) * 8,
W
wawltor 已提交
1119
        cu_stream);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
#ifdef __HIPCC__
    if (err != hipSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "hipcub::DeviceSegmentedRadixSort::SortPairsDescending to "
                    "calculate "
                    "temp_storage_bytes, status: "
                 << hipGetErrorString(err);
      return false;
    }
#else
W
wawltor 已提交
1130 1131 1132 1133 1134 1135 1136 1137
    if (err != cudaSuccess) {
      LOG(ERROR)
          << "TopKOP failed as could not launch "
             "cub::DeviceSegmentedRadixSort::SortPairsDescending to calculate "
             "temp_storage_bytes, status: "
          << cudaGetErrorString(err);
      return false;
    }
1138
#endif
W
wawltor 已提交
1139
  } else {
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    auto err =
        cub::DeviceSegmentedRadixSort::SortPairs(nullptr,
                                                 temp_storage_bytes,
                                                 input,
                                                 sorted_values_ptr,
                                                 input_indices.data<int64_t>(),
                                                 sorted_indices_ptr,
                                                 num_cols * num_rows,
                                                 num_rows,
                                                 segment_offsets_t,
                                                 segment_offsets_t + 1,
                                                 0,
                                                 sizeof(T) * 8,
                                                 cu_stream);
1154 1155 1156 1157 1158 1159 1160 1161 1162
#ifdef __HIPCC__
    if (err != hipSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "hipcub::DeviceSegmentedRadixSort::SortPairs to calculate "
                    "temp_storage_bytes, status: "
                 << hipGetErrorString(err);
      return false;
    }
#else
W
wawltor 已提交
1163 1164 1165 1166 1167 1168 1169
    if (err != cudaSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "cub::DeviceSegmentedRadixSort::SortPairs to calculate "
                    "temp_storage_bytes, status: "
                 << cudaGetErrorString(err);
      return false;
    }
1170
#endif
W
wawltor 已提交
1171 1172
  }
  Tensor temp_storage;
1173
  ctx.template Alloc<uint8_t>(&temp_storage, temp_storage_bytes);
W
wawltor 已提交
1174 1175 1176

  if (largest) {
    auto err = cub::DeviceSegmentedRadixSort::SortPairsDescending(
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
        temp_storage.data<uint8_t>(),
        temp_storage_bytes,
        input,
        sorted_values_ptr,
        input_indices.data<int64_t>(),
        sorted_indices_ptr,
        num_cols * num_rows,
        num_rows,
        segment_offsets_t,
        segment_offsets_t + 1,
        0,
        sizeof(T) * 8,
        cu_stream);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
#ifdef __HIPCC__
    if (err != hipSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "hipcub::DeviceSegmentedRadixSort::SortPairsDescending to "
                    "sort input, "
                    "temp_storage_bytes: "
                 << temp_storage_bytes
                 << ", status: " << hipGetErrorString(err);
      return false;
    }
#else
W
wawltor 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209
    if (err != cudaSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "cub::DeviceSegmentedRadixSort::SortPairsDescending to "
                    "sort input, "
                    "temp_storage_bytes: "
                 << temp_storage_bytes
                 << ", status: " << cudaGetErrorString(err);
      return false;
    }
1210
#endif
W
wawltor 已提交
1211
  } else {
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    auto err =
        cub::DeviceSegmentedRadixSort::SortPairs(temp_storage.data<uint8_t>(),
                                                 temp_storage_bytes,
                                                 input,
                                                 sorted_values_ptr,
                                                 input_indices.data<int64_t>(),
                                                 sorted_indices_ptr,
                                                 num_cols * num_rows,
                                                 num_rows,
                                                 segment_offsets_t,
                                                 segment_offsets_t + 1,
                                                 0,
                                                 sizeof(T) * 8,
                                                 cu_stream);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
#ifdef __HIPCC__
    if (err != hipSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "hipcub::DeviceSegmentedRadixSort::SortPairs to "
                    "sort input, "
                    "temp_storage_bytes: "
                 << temp_storage_bytes
                 << ", status: " << hipGetErrorString(err);
      return false;
    }
#else
W
wawltor 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
    if (err != cudaSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "cub::DeviceSegmentedRadixSort::SortPairs to "
                    "sort input, "
                    "temp_storage_bytes: "
                 << temp_storage_bytes
                 << ", status: " << cudaGetErrorString(err);
      return false;
    }
1246
#endif
W
wawltor 已提交
1247 1248 1249 1250 1251 1252
  }
  auto& dev = *ctx.eigen_device();
  if (k < num_cols) {
    // copy sliced data to output.
    const Eigen::DSizes<Eigen::DenseIndex, 2> slice_indices{0, 0};
    const Eigen::DSizes<Eigen::DenseIndex, 2> slice_sizes{num_rows, k};
1253 1254
    auto e_indices = phi::EigenMatrix<int64_t>::From(*indices_tensor, dim);
    auto e_tmp_indices = phi::EigenMatrix<int64_t>::From(
1255
        static_cast<const Tensor>(temp_indices));
W
wawltor 已提交
1256 1257

    std::vector<int> odims = {static_cast<int>(num_rows), static_cast<int>(k)};
1258
    auto dim = phi::make_ddim(odims);
1259
    auto e_values = phi::EigenMatrix<T>::From(*out_tensor, dim);
1260
    auto e_tmp_values =
1261
        phi::EigenMatrix<T>::From(static_cast<const Tensor>(temp_values));
W
wawltor 已提交
1262

1263
    phi::funcs::EigenSlice<std::decay_t<decltype(dev)>, int64_t, 2>::Eval(
1264
        dev, e_indices, e_tmp_indices, slice_indices, slice_sizes);
1265
    phi::funcs::EigenSlice<std::decay_t<decltype(dev)>, T, 2>::Eval(
1266
        dev, e_values, e_tmp_values, slice_indices, slice_sizes);
W
wawltor 已提交
1267 1268 1269
  }
  return true;
}
1270 1271
}  // namespace funcs
}  // namespace phi