未验证 提交 d1e89ead 编写于 作者: W wuhuanzhou 提交者: GitHub

optimize OP's compilation time implemented by Eigen, test=develop (#33218)

上级 e7541209
......@@ -196,6 +196,26 @@ struct EigenRankLossGrad {
const InType& left, const InType& right);
};
template <typename EigenDevice, typename T>
struct EigenLogLoss {
using InType = Eigen::TensorMap<
Eigen::Tensor<const T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
using OutType =
Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
static void Eval(const EigenDevice& dev, OutType out, const InType& pred,
const InType& label, const T& epsilon);
};
template <typename EigenDevice, typename T>
struct EigenLogLossGrad {
using InType = Eigen::TensorMap<
Eigen::Tensor<const T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
using OutType =
Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
static void Eval(const EigenDevice& dev, OutType dpred, const InType& dloss,
const InType& pred, const InType& label, const T& epsilon);
};
template <typename EigenDevice, typename T>
struct EigenHingeLoss {
using InType = Eigen::TensorMap<
......
......@@ -53,6 +53,39 @@ struct EigenRankLossGrad<Eigen::DefaultDevice, T> {
template struct EigenRankLoss<Eigen::DefaultDevice, float>;
template struct EigenRankLossGrad<Eigen::DefaultDevice, float>;
template <typename T>
struct EigenLogLoss<Eigen::DefaultDevice, T> {
using InType = Eigen::TensorMap<
Eigen::Tensor<const T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
using OutType =
Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
static void Eval(const Eigen::DefaultDevice& dev, OutType out,
const InType& pred, const InType& label, const T& epsilon) {
out.device(dev) = (-(label * (pred + epsilon).log()) -
((static_cast<T>(1) - label) *
(static_cast<T>(1) - pred + epsilon).log()));
}
};
template <typename T>
struct EigenLogLossGrad<Eigen::DefaultDevice, T> {
using InType = Eigen::TensorMap<
Eigen::Tensor<const T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
using OutType =
Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
static void Eval(const Eigen::DefaultDevice& dev, OutType dpred,
const InType& dloss, const InType& pred, const InType& label,
const T& epsilon) {
dpred.device(dev) =
dloss *
(-(label / (pred + epsilon)) +
((static_cast<T>(1) - label) / (static_cast<T>(1) - pred + epsilon)));
}
};
template struct EigenLogLoss<Eigen::DefaultDevice, float>;
template struct EigenLogLossGrad<Eigen::DefaultDevice, float>;
template <typename T>
struct EigenHingeLoss<Eigen::DefaultDevice, T> {
using InType = Eigen::TensorMap<
......
......@@ -53,6 +53,39 @@ struct EigenRankLossGrad<Eigen::GpuDevice, T> {
template struct EigenRankLoss<Eigen::GpuDevice, float>;
template struct EigenRankLossGrad<Eigen::GpuDevice, float>;
template <typename T>
struct EigenLogLoss<Eigen::GpuDevice, T> {
using InType = Eigen::TensorMap<
Eigen::Tensor<const T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
using OutType =
Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
static void Eval(const Eigen::GpuDevice& dev, OutType out, const InType& pred,
const InType& label, const T& epsilon) {
out.device(dev) = (-(label * (pred + epsilon).log()) -
((static_cast<T>(1) - label) *
(static_cast<T>(1) - pred + epsilon).log()));
}
};
template <typename T>
struct EigenLogLossGrad<Eigen::GpuDevice, T> {
using InType = Eigen::TensorMap<
Eigen::Tensor<const T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
using OutType =
Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>>;
static void Eval(const Eigen::GpuDevice& dev, OutType dpred,
const InType& dloss, const InType& pred, const InType& label,
const T& epsilon) {
dpred.device(dev) =
dloss *
(-(label / (pred + epsilon)) +
((static_cast<T>(1) - label) / (static_cast<T>(1) - pred + epsilon)));
}
};
template struct EigenLogLoss<Eigen::GpuDevice, float>;
template struct EigenLogLossGrad<Eigen::GpuDevice, float>;
template <typename T>
struct EigenHingeLoss<Eigen::GpuDevice, T> {
using InType = Eigen::TensorMap<
......
......@@ -154,3 +154,8 @@ REGISTER_OP_CPU_KERNEL(
REGISTER_OP_CPU_KERNEL(
log_loss_grad,
ops::LogLossGradKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
log_loss, ops::LogLossKernel<paddle::platform::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
log_loss_grad,
ops::LogLossGradKernel<paddle::platform::CUDADeviceContext, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/log_loss_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
log_loss, ops::LogLossKernel<paddle::platform::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
log_loss_grad,
ops::LogLossGradKernel<paddle::platform::CUDADeviceContext, float>);
......@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
namespace paddle {
namespace operators {
......@@ -40,9 +41,8 @@ class LogLossKernel : public framework::OpKernel<T> {
auto loss = EigenVector<T>::Flatten(*loss_out);
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
loss.device(place) = (-(label * (prediction + epsilon).log()) -
((static_cast<T>(1) - label) *
(static_cast<T>(1) - prediction + epsilon).log()));
EigenLogLoss<std::decay_t<decltype(place)>, T>::Eval(
place, loss, prediction, label, epsilon);
}
};
......@@ -64,9 +64,8 @@ class LogLossGradKernel : public framework::OpKernel<T> {
if (dpred) {
dpred->mutable_data<T>(ctx.GetPlace());
auto dx = framework::EigenVector<T>::Flatten(*dpred);
dx.device(place) = dl * (-(label / (prediction + epsilon)) +
((static_cast<T>(1) - label) /
(static_cast<T>(1) - prediction + epsilon)));
EigenLogLossGrad<std::decay_t<decltype(place)>, T>::Eval(
place, dx, dl, prediction, label, epsilon);
}
}
};
......
......@@ -22,6 +22,7 @@ limitations under the License. */
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
#endif
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/top_k_op.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/float16.h"
......@@ -563,15 +564,19 @@ bool SortTopk(const platform::CUDADeviceContext& ctx,
const Eigen::DSizes<Eigen::DenseIndex, 2> slice_sizes{num_rows, k};
auto e_indices =
framework::EigenMatrix<int64_t>::From(*indices_tensor, dim);
auto e_tmp_indices = framework::EigenMatrix<int64_t>::From(temp_indices);
auto e_tmp_indices = framework::EigenMatrix<int64_t>::From(
static_cast<const Tensor>(temp_indices));
std::vector<int> odims = {static_cast<int>(num_rows), static_cast<int>(k)};
auto dim = framework::make_ddim(odims);
auto e_values = framework::EigenMatrix<T>::From(*out_tensor, dim);
auto e_tmp_values = framework::EigenMatrix<T>::From(temp_values);
auto e_tmp_values =
framework::EigenMatrix<T>::From(static_cast<const Tensor>(temp_values));
e_indices.device(dev) = e_tmp_indices.slice(slice_indices, slice_sizes);
e_values.device(dev) = e_tmp_values.slice(slice_indices, slice_sizes);
EigenSlice<std::decay_t<decltype(dev)>, int64_t, 2>::Eval(
dev, e_indices, e_tmp_indices, slice_indices, slice_sizes);
EigenSlice<std::decay_t<decltype(dev)>, T, 2>::Eval(
dev, e_values, e_tmp_values, slice_indices, slice_sizes);
}
return true;
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册