ut_helper.h 8.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

N
nhzlx 已提交
22
#include <memory>
23
#include <string>
N
nhzlx 已提交
24
#include <unordered_set>
25 26
#include <vector>

Y
Yan Chunwei 已提交
27 28
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
N
nhzlx 已提交
29
#include "paddle/fluid/framework/tensor_util.h"
Y
Yan Chunwei 已提交
30 31 32
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
33
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
34 35 36 37 38 39 40 41 42

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
43
  static std::mt19937 mt(100);
44
  std::uniform_real_distribution<double> dist(low, high);
Y
Yan Chunwei 已提交
45 46 47
  return dist(mt);
}

48 49
void RandomizeTensor(framework::LoDTensor* tensor,
                     const platform::Place& place,
Y
Yan Chunwei 已提交
50 51 52
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
S
Shang Zhizhou 已提交
53
  PADDLE_ENFORCE_GT(
54 55
      num_elements,
      0UL,
S
Shang Zhizhou 已提交
56 57
      platform::errors::PermissionDenied("RandomizeTensor only can be used for "
                                         "tensor which dims is not zero."));
N
nhzlx 已提交
58 59 60 61 62

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);
63

Y
Yan Chunwei 已提交
64
  for (size_t i = 0; i < num_elements; i++) {
N
nhzlx 已提交
65
    *(temp_data + i) = random(0., 1.);
Y
Yan Chunwei 已提交
66
  }
N
nhzlx 已提交
67

68
  paddle::framework::TensorCopySync(temp_tensor, place, tensor);
Y
Yan Chunwei 已提交
69 70 71 72 73 74 75 76 77 78
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

79
  TRTConvertValidation(int max_batch_size,
80
                       const std::unordered_set<std::string>& parameters,
G
gongweibao 已提交
81
                       framework::Scope& scope,  // NOLINT
82 83
                       int workspace_size = 1 << 10,
                       bool if_add_batch = true)
84 85
      : parameters_(parameters),
        scope_(scope),
N
nhzlx 已提交
86 87
        if_add_batch_(if_add_batch),
        max_batch_size_(max_batch_size) {
88 89
    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_),
                      0,
S
Shang Zhizhou 已提交
90
                      platform::errors::External("cudaStreamCreate error."));
Z
Zhaolong Xing 已提交
91
    engine_.reset(new TensorRTEngine(max_batch_size, workspace_size));
N
nhzlx 已提交
92
    engine_->InitNetwork();
Y
Yan Chunwei 已提交
93 94 95
  }

  // Declare a Variable as input with random initialization.
96 97
  void DeclInputVar(const std::string& name,
                    const std::vector<int> tensor_dims,
N
nhzlx 已提交
98 99 100 101 102
                    const nvinfer1::Dims& trt_dims) {
    DeclVar(name, tensor_dims);
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, trt_dims);
  }

Y
Yan Chunwei 已提交
103 104 105 106 107 108
  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

N
nhzlx 已提交
109 110 111 112
  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

T
tianshuo78520a 已提交
113
  // Declare a parameter variable in the scope.
114
  void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
115
    DeclVar(name, dims, true);
116 117
  }

N
nhzlx 已提交
118 119 120 121
  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

Y
Yan Chunwei 已提交
122 123 124 125
  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

N
nhzlx 已提交
126
  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
N
nhzlx 已提交
127
    platform::CUDADeviceContext ctx(place_);
Y
Yan Chunwei 已提交
128

N
nhzlx 已提交
129 130
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
131
    x_tensor->Resize(phi::make_ddim(dim_vec));
N
nhzlx 已提交
132
    RandomizeTensor(x_tensor, place_, ctx);
N
nhzlx 已提交
133 134
  }
  // Declare a variable in a fluid Scope.
135 136
  void DeclVar(const std::string& name,
               const nvinfer1::Dims& dims,
N
nhzlx 已提交
137
               bool is_param = false) {
Y
Yan Chunwei 已提交
138
    // Init Fluid tensor.
139
    std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
140
    // There is no batchsize in ITensor's shape, but We should add it to
N
nhzlx 已提交
141 142 143 144
    // tensor's shape of fluid. If the variable is not parameter and the
    // if_add_batch_ flag is true, add the max batchsize to dim_vec.
    if (is_param != true && if_add_batch_ == true)
      dim_vec.insert(dim_vec.begin(), max_batch_size_);
N
nhzlx 已提交
145 146

    DeclVar(name, dim_vec);
Y
Yan Chunwei 已提交
147 148 149 150 151
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

152 153
    Singleton<OpConverter>::Global().ConvertOp(
        desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
Y
Yan Chunwei 已提交
154 155 156 157

    engine_->FreezeNetwork();

    // Declare outputs.
F
fengjiayi 已提交
158
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
Y
Yan Chunwei 已提交
159 160
  }

N
nhzlx 已提交
161 162 163
  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
N
nhzlx 已提交
164 165
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
Y
Yan Chunwei 已提交
166
    // Execute Fluid Op
167 168
    PADDLE_ENFORCE_LE(batch_size,
                      max_batch_size_,
S
Shang Zhizhou 已提交
169 170 171 172
                      platform::errors::InvalidArgument(
                          "Runtime batch_size should be less than or equal to "
                          "max_batch_size_. "
                          "But received batch_size:%d, max_batch_size_:%d",
173 174
                          batch_size,
                          max_batch_size_));
N
nhzlx 已提交
175 176
    platform::CUDADeviceContext ctx(place_);
    op_->Run(scope_, place_);
177
    cudaStreamSynchronize(stream_);
N
nhzlx 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    std::vector<std::string> input_output_names;

    // Note: we need filter the parameter
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
      input_output_names.push_back(input);
    }

    // Collect the fluid outputs.
    std::vector<std::vector<float>> fluid_outs;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      input_output_names.push_back(output);
      std::vector<float> fluid_out;
      auto* var = scope_.FindVar(output);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
      fluid_outs.push_back(fluid_out);
    }

    // Bind input and output for TRT.
    const int num_bindings = input_output_names.size();
    std::vector<void*> buffers(num_bindings);

    for (const std::string& name : input_output_names) {
      auto* var = scope_.FindVar(name);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      const int bind_index = engine_->engine()->getBindingIndex(name.c_str());
      buffers[bind_index] =
N
nhzlx 已提交
207
          static_cast<void*>(tensor->mutable_data<float>(place_));
N
nhzlx 已提交
208 209
    }

210
    // Execute TRT.
211
    engine_->Execute(batch_size, &buffers, stream_);
212
    cudaStreamSynchronize(stream_);
Y
Yan Chunwei 已提交
213 214

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
N
nhzlx 已提交
215
    int index = 0;
Y
Yan Chunwei 已提交
216
    for (const auto& output : op_desc_->OutputArgumentNames()) {
N
nhzlx 已提交
217
      if (neglected_output.count(output)) continue;
N
nhzlx 已提交
218
      std::vector<float> trt_out;
Y
Yan Chunwei 已提交
219
      auto* var = scope_.FindVar(output);
N
nhzlx 已提交
220 221
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &trt_out);
N
nhzlx 已提交
222

N
nhzlx 已提交
223
      size_t fluid_out_size = fluid_outs[index].size();
N
nhzlx 已提交
224
      if (if_add_batch_ == true) {
N
nhzlx 已提交
225
        fluid_out_size =
226
            batch_size * (phi::product(tensor->dims()) / max_batch_size_);
N
nhzlx 已提交
227
      }
N
nhzlx 已提交
228

N
nhzlx 已提交
229
      for (size_t i = 0; i < fluid_out_size; i++) {
230
        // Loose the threshold for CI in different machine model.
N
nhzlx 已提交
231
        EXPECT_LT(std::abs(fluid_outs[index][i] - trt_out[i]), 2e-5);
Y
Yan Chunwei 已提交
232
      }
N
nhzlx 已提交
233
      index += 1;
Y
Yan Chunwei 已提交
234 235 236 237 238 239
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
N
nhzlx 已提交
240
  platform::CUDAPlace place_;
Y
Yan Chunwei 已提交
241 242 243 244
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
245 246
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
N
nhzlx 已提交
247 248 249 250 251 252
  // The ITensor of trt does not cotain the batch size,
  // bug, in most cases, we need to set batch size for
  // fluid's tensor shape. This variable indicates
  // whether to add batch size to tensor shape of fluid.
  bool if_add_batch_;
  int max_batch_size_;
Y
Yan Chunwei 已提交
253 254 255 256 257
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle