downpour_worker.cc 37.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/fleet/metrics.h"
17
#include "paddle/fluid/platform/cpu_helper.h"
W
wanghuancoder 已提交
18

19
namespace phi {
20
class DenseTensor;
21
}  // namespace phi
22

W
wanghuancoder 已提交
23 24 25 26 27
namespace paddle {
namespace framework {
class Variable;
}  // namespace framework
}  // namespace paddle
28

29 30 31 32 33
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

34 35
namespace paddle {
namespace framework {
36
void DownpourWorker::Initialize(const TrainerDesc& desc) {
37
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
38
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
39 40 41 42
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
43
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
44 45 46
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
47
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
48 49 50
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
51
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
52 53
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
54
    label_var_name_[table_id] = table.label_var_name();
55
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
56 57
  }

D
dongdaxiang 已提交
58
  for (int i = 0; i < param_.dense_table_size(); ++i) {
59 60 61
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
62
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
63 64 65
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
66
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
67 68 69 70
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

Z
zhang wenhui 已提交
71 72 73 74 75 76 77
  flag_partial_push_ = false;
  for (auto& m : param_.program_config(0).partial_pushdense_condtable_map()) {
    cond2table_map_[m.key()] = m.value();
    condvalue_set_.insert(m.value());
    flag_partial_push_ = true;
  }

78
  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
79
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
80 81
    skip_ops_[i] = param_.skip_ops(i);
  }
82

83 84 85 86
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

87 88 89
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

90
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
91
  fetch_config_ = desc.fetch_config();
92
  use_cvm_ = desc.use_cvm();
93 94
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
95 96
  scale_sparse_gradient_with_batch_size_ =
      desc.scale_sparse_gradient_with_batch_size();
97
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
98
  dump_slot_ = desc.dump_slot();
99
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
100 101 102
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
X
xujiaqi01 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
126 127
}

128
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
129 130 131
  if (no_cvm_) {
    return;
  }
H
heqiaozhi 已提交
132
  uint64_t table_id = static_cast<uint64_t>(
133
      param_.program_config(0).pull_sparse_table_id(table_idx));
134

H
heqiaozhi 已提交
135 136 137 138 139 140 141
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
142 143 144
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
145
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
146 147 148
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
149
  size_t global_index = 0;
150
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
151 152
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
153
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
154 155 156
    if (fea_var == nullptr) {
      continue;
    }
157
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
158 159
    CHECK(tensor != nullptr)
        << "tensor of var " << sparse_key_names_[table_id][i] << " is null";
160 161 162 163 164 165 166 167

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

168
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
169
    size_t fea_idx = 0;
170
    // tensor->lod()[0].size() == batch_size + 1
171 172
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
173 174 175 176
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
177 178
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
179 180 181 182 183 184 185 186
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
187
  uint64_t table_id = static_cast<uint64_t>(
188
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
189 190 191 192 193 194 195 196

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
197 198 199 200

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
201
  std::vector<float> init_value(table.fea_dim());
202 203 204 205
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
206 207 208
    if (var == nullptr) {
      continue;
    }
209
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
210
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
211 212 213
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
214 215 216
    if (var_emb == nullptr) {
      continue;
    }
217 218 219 220 221 222 223
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
224 225 226 227 228 229 230 231

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
232
    for (int index = 0; index < len; ++index) {
233
      if (use_cvm_ || no_cvm_) {
234
        if (ids[index] == 0u) {
235 236
          memcpy(ptr + table.emb_dim() * index,
                 init_value.data(),
237
                 sizeof(float) * table.emb_dim());
238 239 240 241
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
242 243
          continue;
        }
244 245
        memcpy(ptr + table.emb_dim() * index,
               fea_value[fea_idx].data(),
246
               sizeof(float) * table.emb_dim());
247 248
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
249 250 251
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
252 253 254
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
255 256
          memcpy(ptr + table.emb_dim() * index,
                 init_value.data() + 2,
257
                 sizeof(float) * table.emb_dim());
258 259 260 261
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
262 263
          continue;
        }
264 265
        memcpy(ptr + table.emb_dim() * index,
               fea_value[fea_idx].data() + 2,
266
               sizeof(float) * table.emb_dim());
267 268
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
269 270 271
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
272
        fea_idx++;
273 274 275 276 277
      }
    }
  }
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
316 317 318
  CHECK(len == nid_show_.size())
      << "ins_weight size should be equal to "
      << "nid_show size, " << len << " vs " << nid_show_.size();
319 320 321 322 323
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
324
  for (size_t i = 0; i < len; ++i) {
325 326 327 328 329 330 331 332
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
333 334
      ins_weight = log(M_E + (nid_adjw_threshold - nid_show) /
                                 nid_adjw_threshold * nid_adjw_ratio);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

X
xujiaqi01 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
399 400
      fleet_ptr_->PullDenseVarsAsync(*root_scope_,
                                     dest_table,
X
xujiaqi01 已提交
401
                                     dense_value_names_[dest_table],
402 403
                                     &pull_dense_status,
                                     true);
X
xujiaqi01 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
431 432
    CHECK(src_tensor != nullptr)
        << src_var_name << " tensor is null";  // NOLINT
X
xujiaqi01 已提交
433 434 435 436 437
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
438 439
    CHECK(dest_tensor != nullptr)
        << dest_var_name << " tensor is null";  // NOLINT
X
xujiaqi01 已提交
440 441 442 443 444 445 446 447 448 449 450
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

451 452 453
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
479
  double adjust_ins_weight_time = 0.0;
480 481 482 483
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
X
xujiaqi01 已提交
484
  double copy_table_time = 0.0;
485 486
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
487
  uint64_t total_inst = 0;
488 489 490 491 492
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
X
xujiaqi01 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

507
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
508
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
509 510 511 512
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
513 514 515
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
516 517 518 519
          break;
        }
      }
      timeline.Start();
520 521 522 523 524 525 526
      fleet_ptr_->PullSparseVarsSync(*thread_scope_,
                                     tid,
                                     sparse_key_names_[tid],
                                     &features_[tid],
                                     &feature_values_[tid],
                                     table.fea_dim(),
                                     sparse_value_names_[tid]);
527 528
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
529
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
530
      timeline.Start();
531 532 533
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
534
      total_time += timeline.ElapsedSec();
535 536 537 538
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
539
      total_time += timeline.ElapsedSec();
540 541 542 543 544 545 546 547 548 549
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
550 551 552 553 554 555 556 557 558 559 560 561 562 563
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
564
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
565
        op->Run(*thread_scope_, place_);
566
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
567 568 569 570 571 572
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

573 574 575 576 577 578 579 580 581 582
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
583 584
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor),
                        false,
585 586
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
587 588
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor),
                        false,
589 590
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
591 592
    }

593
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
594 595
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
596 597 598 599 600 601 602 603
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
604
        }
605 606
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
607 608 609 610 611 612 613 614 615 616 617 618 619 620
            *thread_scope_,
            tid,
            features_[tid],
            feature_labels_[tid],
            sparse_key_names_[tid],
            sparse_grad_names_[tid],
            table.emb_dim(),
            &feature_grads_[tid],
            &push_sparse_status_,
            cur_batch,
            use_cvm_,
            dump_slot_,
            &sparse_push_keys_[tid],
            no_cvm_,
621
            scale_sparse_gradient_with_batch_size_);
622 623 624
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
625
      }
626 627
    }

X
xujiaqi01 已提交
628 629 630 631 632 633 634 635 636 637 638 639
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

640
    if (need_to_push_dense_) {
641
      timeline.Start();
D
dongdaxiang 已提交
642 643
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
644 645
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
646 647 648 649 650 651
        fleet_ptr_->PushDenseVarsAsync(*thread_scope_,
                                       tid,
                                       dense_grad_names_[tid],
                                       &push_sparse_status_,
                                       scale_datanorm_,
                                       cur_batch);
652
      }
653
      timeline.Pause();
654
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
655
      total_time += timeline.ElapsedSec();
656 657 658 659 660 661 662 663 664
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
665 666
      }

667 668
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
669 670 671
      }
    }

672
    if (need_to_push_sparse_) {
673 674 675
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
676 677 678 679 680 681
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
682

683 684 685
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
686

687 688 689
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
690 691 692
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
693 694
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
695 696 697 698
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
699 700
    }

D
dongdaxiang 已提交
701
    PrintFetchVars();
702
    thread_scope_->DropKids();
D
dongdaxiang 已提交
703
    total_inst += cur_batch;
704 705 706 707 708
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
709 710
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
711
        for (size_t i = 0; i < op_total_time.size(); ++i) {
712 713 714 715 716
          fprintf(stderr,
                  "op_name:[%zu][%s], op_mean_time:[%fs]\n",
                  i,
                  op_name[i].c_str(),
                  op_total_time[i] / batch_cnt);
717 718 719 720 721 722 723
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
724 725 726
          fprintf(stderr,
                  "op [%s] run total time: [%f]ms\n",
                  i.first.c_str(),
727
                  i.second / batch_cnt);
728
        }
729 730
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
731 732 733 734 735 736
        fprintf(
            stderr, "pull sparse time: %fs\n", pull_sparse_time / batch_cnt);
        fprintf(
            stderr, "fill sparse time: %fs\n", fill_sparse_time / batch_cnt);
        fprintf(
            stderr, "push sparse time: %fs\n", push_sparse_time / batch_cnt);
737
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
738 739
        fprintf(stderr,
                "collect label time: %fs\n",
740
                collect_label_time / batch_cnt);
741 742
        fprintf(stderr,
                "adjust ins weight time: %fs\n",
743
                adjust_ins_weight_time / batch_cnt);
X
xujiaqi01 已提交
744
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
745 746
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
747
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
748 749
        fprintf(stderr,
                "pull sparse time percent: %f\n",
D
dongdaxiang 已提交
750
                pull_sparse_time / total_time * 100);
751 752
        fprintf(stderr,
                "adjust ins weight time percent: %f\n",
753
                adjust_ins_weight_time / total_time * 100);
754 755
        fprintf(stderr,
                "copy table time percent: %f\n",
X
xujiaqi01 已提交
756
                copy_table_time / total_time * 100);
757 758
        fprintf(stderr,
                "collect label time percent: %f\n",
D
dongdaxiang 已提交
759
                collect_label_time / total_time * 100);
760 761
        fprintf(stderr,
                "fill sparse time percent: %f\n",
D
dongdaxiang 已提交
762
                fill_sparse_time / total_time * 100);
763 764
        fprintf(stderr,
                "push sparse time percent: %f\n",
D
dongdaxiang 已提交
765
                push_sparse_time / total_time * 100);
766 767
        fprintf(stderr,
                "push dense time percent: %f\n",
D
dongdaxiang 已提交
768
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
769
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
770 771
      }
    }
D
dongdaxiang 已提交
772
    timeline.Start();
773
  }
X
xujiaqi01 已提交
774 775 776 777 778
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
779 780
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
#ifdef PADDLE_WITH_PSLIB
/**
 * @brief add auc monitor
 */
inline void AddAucMonitor(const Scope* scope, const platform::Place& place) {
  auto metric_ptr = Metric::GetInstance();
  auto& metric_list = metric_ptr->GetMetricList();
  for (auto iter = metric_list.begin(); iter != metric_list.end(); iter++) {
    auto* metric_msg = iter->second;
    if (metric_ptr->Phase() != metric_msg->MetricPhase()) {
      continue;
    }
    metric_msg->add_data(scope, place);
  }
}
#endif

798
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
799
  VLOG(3) << "Begin to train files";
800
  platform::SetNumThreads(1);
801
  device_reader_->Start();
802 803
  int batch_cnt = 0;
  int cur_batch;
804
  while ((cur_batch = device_reader_->Next()) > 0) {
X
xujiaqi01 已提交
805 806 807 808 809 810 811
    if (copy_table_config_.need_copy()) {
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
812
    // pull sparse here
D
dongdaxiang 已提交
813
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
814 815 816 817
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
818 819 820
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
821 822 823
          break;
        }
      }
824 825 826 827 828 829 830
      fleet_ptr_->PullSparseVarsSync(*thread_scope_,
                                     tid,
                                     sparse_key_names_[tid],
                                     &features_[tid],
                                     &feature_values_[tid],
                                     table.fea_dim(),
                                     sparse_value_names_[tid]);
831 832
      CollectLabelInfo(i);
      FillSparseValue(i);
833 834 835 836 837 838
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
839
    }
D
dongdaxiang 已提交
840
    VLOG(3) << "fill sparse value for all sparse table done.";
841 842 843

    // do computation here
    for (auto& op : ops_) {
844 845 846 847 848 849 850 851
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
852 853 854 855 856 857 858 859 860 861 862 863
#ifdef PADDLE_WITH_PSLIB
        try {
          op->Run(*thread_scope_, place_);
        } catch (std::exception& e) {
          fprintf(stderr, "error message: %s\n", e.what());
          auto& ins_id_vec = device_reader_->GetInsIdVec();
          size_t batch_size = device_reader_->GetCurBatchSize();
          std::string s = "";
          for (auto& ins_id : ins_id_vec) {
            if (s != "") s += ",";
            s += ins_id;
          }
864 865 866
          fprintf(stderr,
                  "batch_size: %zu, ins_ids_vec: %s\n",
                  batch_size,
867 868 869 870 871 872 873 874 875 876 877 878
                  s.c_str());
          s = "";
          for (auto& param : all_param_) {
            Variable* var = thread_scope_->FindVar(param);
            if (var == nullptr) {
              continue;
            }
            Tensor* tensor = nullptr;
            int64_t len = 0;
            if (var->IsType<framework::LoDTensor>()) {
              tensor = var->GetMutable<LoDTensor>();
              len = tensor->numel();
879 880
            } else if (var->IsType<phi::SelectedRows>()) {
              auto selected_rows = var->GetMutable<phi::SelectedRows>();
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
              tensor = selected_rows->mutable_value();
              len = tensor->numel();
            }
            if (!tensor->IsInitialized()) {
              continue;
            }
            s += param + ":" + std::to_string(len) + ":";
            s += PrintLodTensor(tensor, 0, len);
            fprintf(stderr, "%s\n", s.c_str());
            fflush(stderr);
            s = "";
          }
          throw e;
        }
#else
896
        op->Run(*thread_scope_, place_);
897
#endif
898
      }
899 900
    }

901 902 903 904 905 906 907
#ifdef PADDLE_WITH_PSLIB
    // add data for MetricMsg
    if (Metric::GetInstance() != nullptr) {
      AddAucMonitor(thread_scope_, place_);
    }
#endif

908 909 910 911 912 913 914 915 916 917
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
918 919
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor),
                        false,
920 921
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
922 923
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor),
                        false,
924 925
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
926 927
    }

928 929
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
930 931
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
932 933 934 935 936 937 938 939
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
940
        }
941
        fleet_ptr_->PushSparseVarsWithLabelAsync(
942 943 944 945 946 947 948 949 950 951 952 953 954 955
            *thread_scope_,
            tid,
            features_[tid],
            feature_labels_[tid],
            sparse_key_names_[tid],
            sparse_grad_names_[tid],
            table.emb_dim(),
            &feature_grads_[tid],
            &push_sparse_status_,
            cur_batch,
            use_cvm_,
            dump_slot_,
            &sparse_push_keys_[tid],
            no_cvm_,
956
            scale_sparse_gradient_with_batch_size_);
H
heqiaozhi 已提交
957
      }
958 959
    }

X
xujiaqi01 已提交
960 961 962 963 964 965 966 967 968 969 970 971
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

972
    if (need_to_push_dense_) {
Z
zhang wenhui 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
      if (flag_partial_push_) {
        Variable* var = (*thread_scope_).FindVar("cond_tag");
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        // check type in python code
        int64_t* cond_value_batch = tensor->data<int64_t>();

        for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
             ++i) {
          uint64_t tid = static_cast<uint64_t>(
              param_.program_config(0).push_dense_table_id(i));
          if (condvalue_set_.find(tid) != condvalue_set_.end()) {
            // common dense table must push dense
            if (cond2table_map_[cond_value_batch[0]] != tid) {
              // can't push dense
              continue;
            }
          }

          VLOG(3) << "push multitask dense gradient " << tid;
992 993 994 995 996 997
          fleet_ptr_->PushDenseVarsAsync(*thread_scope_,
                                         tid,
                                         dense_grad_names_[tid],
                                         &push_sparse_status_,
                                         scale_datanorm_,
                                         cur_batch);
Z
zhang wenhui 已提交
998 999 1000 1001 1002 1003 1004 1005
        }

      } else {
        for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
             ++i) {
          uint64_t tid = static_cast<uint64_t>(
              param_.program_config(0).push_dense_table_id(i));

1006 1007 1008 1009 1010 1011
          fleet_ptr_->PushDenseVarsAsync(*thread_scope_,
                                         tid,
                                         dense_grad_names_[tid],
                                         &push_sparse_status_,
                                         scale_datanorm_,
                                         cur_batch);
Z
zhang wenhui 已提交
1012
        }
1013
      }
Z
zhang wenhui 已提交
1014

1015
      VLOG(3) << "push dense gradient done.";
1016

1017 1018 1019 1020 1021
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
1022

1023 1024 1025 1026 1027
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
1028 1029
      }

1030 1031 1032
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
1033 1034
    }

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
1045 1046
      }

1047 1048 1049
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
1050 1051
    }

1052
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
1053 1054
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
1055 1056 1057 1058
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
1059
    }
1060
    if (need_dump_field_) {
H
hutuxian 已提交
1061 1062 1063 1064
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
1065
    }
1066

D
dongdaxiang 已提交
1067
    PrintFetchVars();
1068 1069 1070
    thread_scope_->DropKids();
    ++batch_cnt;
  }
H
hutuxian 已提交
1071
  if (need_dump_field_ || need_dump_param_) {
1072 1073
    writer_.Flush();
  }
X
xujiaqi01 已提交
1074 1075 1076 1077 1078
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
1079 1080 1081 1082
}

}  // end namespace framework
}  // end namespace paddle