downpour_worker.cc 35.6 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/fleet/metrics.h"
17
#include "paddle/fluid/platform/cpu_helper.h"
W
wanghuancoder 已提交
18

19
namespace phi {
20
class DenseTensor;
21
}  // namespace phi
22

W
wanghuancoder 已提交
23 24 25 26 27
namespace paddle {
namespace framework {
class Variable;
}  // namespace framework
}  // namespace paddle
28

29 30 31 32 33
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

34 35
namespace paddle {
namespace framework {
36
void DownpourWorker::Initialize(const TrainerDesc& desc) {
37
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
38
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
39 40 41 42
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
43
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
44 45 46
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
47
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
48 49 50
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
51
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
52 53
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
54
    label_var_name_[table_id] = table.label_var_name();
55
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
56 57
  }

D
dongdaxiang 已提交
58
  for (int i = 0; i < param_.dense_table_size(); ++i) {
59 60 61
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
62
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
63 64 65
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
66
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
67 68 69 70
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

Z
zhang wenhui 已提交
71 72 73 74 75 76 77
  flag_partial_push_ = false;
  for (auto& m : param_.program_config(0).partial_pushdense_condtable_map()) {
    cond2table_map_[m.key()] = m.value();
    condvalue_set_.insert(m.value());
    flag_partial_push_ = true;
  }

78
  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
79
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
80 81
    skip_ops_[i] = param_.skip_ops(i);
  }
82

83 84 85 86
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

87 88 89
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

90
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
91
  fetch_config_ = desc.fetch_config();
92
  use_cvm_ = desc.use_cvm();
93 94
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
95 96
  scale_sparse_gradient_with_batch_size_ =
      desc.scale_sparse_gradient_with_batch_size();
97
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
98
  dump_slot_ = desc.dump_slot();
99
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
100 101 102
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
X
xujiaqi01 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
126 127
}

128
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
129 130 131
  if (no_cvm_) {
    return;
  }
H
heqiaozhi 已提交
132
  uint64_t table_id = static_cast<uint64_t>(
133
      param_.program_config(0).pull_sparse_table_id(table_idx));
134

H
heqiaozhi 已提交
135 136 137 138 139 140 141
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
142 143 144
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
145
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
146 147 148
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
149
  size_t global_index = 0;
150
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
151 152
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
153
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
154 155 156
    if (fea_var == nullptr) {
      continue;
    }
157
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
158 159
    CHECK(tensor != nullptr)
        << "tensor of var " << sparse_key_names_[table_id][i] << " is null";
160 161 162 163 164 165 166 167

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

168
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
169
    size_t fea_idx = 0;
170
    // tensor->lod()[0].size() == batch_size + 1
171 172
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
173 174 175 176
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
177 178
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
179 180 181 182 183 184 185 186
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
187
  uint64_t table_id = static_cast<uint64_t>(
188
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
189 190 191 192 193 194 195 196

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
197 198 199 200

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
201
  std::vector<float> init_value(table.fea_dim());
202 203 204 205
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
206 207 208
    if (var == nullptr) {
      continue;
    }
209
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
210
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
211 212 213
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
214 215 216
    if (var_emb == nullptr) {
      continue;
    }
217 218 219 220 221 222 223
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
224 225 226 227 228 229 230 231

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
232
    for (int index = 0; index < len; ++index) {
233
      if (use_cvm_ || no_cvm_) {
234 235 236
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
237 238 239 240
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
241 242 243 244
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
245 246
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
247 248 249
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
250 251 252 253 254
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
255 256 257 258
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
259 260 261
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
262
               sizeof(float) * table.emb_dim());
263 264
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
265 266 267
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
268
        fea_idx++;
269 270 271 272 273
      }
    }
  }
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
312 313 314
  CHECK(len == nid_show_.size())
      << "ins_weight size should be equal to "
      << "nid_show size, " << len << " vs " << nid_show_.size();
315 316 317 318 319
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
320
  for (size_t i = 0; i < len; ++i) {
321 322 323 324 325 326 327 328
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
329 330
      ins_weight = log(M_E + (nid_adjw_threshold - nid_show) /
                                 nid_adjw_threshold * nid_adjw_ratio);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

X
xujiaqi01 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, dest_table,
                                     dense_value_names_[dest_table],
T
Thunderbrook 已提交
397
                                     &pull_dense_status, true);
X
xujiaqi01 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
425 426
    CHECK(src_tensor != nullptr)
        << src_var_name << " tensor is null";  // NOLINT
X
xujiaqi01 已提交
427 428 429 430 431
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
432 433
    CHECK(dest_tensor != nullptr)
        << dest_var_name << " tensor is null";  // NOLINT
X
xujiaqi01 已提交
434 435 436 437 438 439 440 441 442 443 444
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

445 446 447
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
473
  double adjust_ins_weight_time = 0.0;
474 475 476 477
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
X
xujiaqi01 已提交
478
  double copy_table_time = 0.0;
479 480
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
481
  uint64_t total_inst = 0;
482 483 484 485 486
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
X
xujiaqi01 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

501
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
502
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
503 504 505 506
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
507 508 509
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
510 511 512 513
          break;
        }
      }
      timeline.Start();
514 515 516
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
517 518
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
519
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
520
      timeline.Start();
521 522 523
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
524
      total_time += timeline.ElapsedSec();
525 526 527 528
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
529
      total_time += timeline.ElapsedSec();
530 531 532 533 534 535 536 537 538 539
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
540 541 542 543 544 545 546 547 548 549 550 551 552 553
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
554
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
555
        op->Run(*thread_scope_, place_);
556
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
557 558 559 560 561 562
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

563 564 565 566 567 568 569 570 571 572 573
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
574 575
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
576
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
577 578
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
579 580
    }

581
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
582 583
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
584 585 586 587 588 589 590 591
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
592
        }
593 594 595 596
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
597
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
598 599
            dump_slot_, &sparse_push_keys_[tid], no_cvm_,
            scale_sparse_gradient_with_batch_size_);
600 601 602
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
603
      }
604 605
    }

X
xujiaqi01 已提交
606 607 608 609 610 611 612 613 614 615 616 617
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

618
    if (need_to_push_dense_) {
619
      timeline.Start();
D
dongdaxiang 已提交
620 621
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
622 623 624
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
625 626
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
627
      }
628
      timeline.Pause();
629
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
630
      total_time += timeline.ElapsedSec();
631 632 633 634 635 636 637 638 639
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
640 641
      }

642 643
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
644 645 646
      }
    }

647
    if (need_to_push_sparse_) {
648 649 650
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
651 652 653 654 655 656
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
657

658 659 660
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
661

662 663 664
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
665 666 667
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
668 669
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
670 671 672 673
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
674 675
    }

D
dongdaxiang 已提交
676
    PrintFetchVars();
677
    thread_scope_->DropKids();
D
dongdaxiang 已提交
678
    total_inst += cur_batch;
679 680 681 682 683
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
684 685
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
686 687 688
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
689 690 691 692 693 694 695 696 697
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
698
        }
699 700 701 702 703 704 705 706 707 708 709
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
710 711
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
X
xujiaqi01 已提交
712
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
713 714
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
715
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
716 717
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
718 719
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
X
xujiaqi01 已提交
720 721
        fprintf(stderr, "copy table time percent: %f\n",
                copy_table_time / total_time * 100);
D
dongdaxiang 已提交
722 723 724 725 726 727 728 729
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
730
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
731 732
      }
    }
D
dongdaxiang 已提交
733
    timeline.Start();
734
  }
X
xujiaqi01 已提交
735 736 737 738 739
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
740 741
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
#ifdef PADDLE_WITH_PSLIB
/**
 * @brief add auc monitor
 */
inline void AddAucMonitor(const Scope* scope, const platform::Place& place) {
  auto metric_ptr = Metric::GetInstance();
  auto& metric_list = metric_ptr->GetMetricList();
  for (auto iter = metric_list.begin(); iter != metric_list.end(); iter++) {
    auto* metric_msg = iter->second;
    if (metric_ptr->Phase() != metric_msg->MetricPhase()) {
      continue;
    }
    metric_msg->add_data(scope, place);
  }
}
#endif

759
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
760
  VLOG(3) << "Begin to train files";
761
  platform::SetNumThreads(1);
762
  device_reader_->Start();
763 764
  int batch_cnt = 0;
  int cur_batch;
765
  while ((cur_batch = device_reader_->Next()) > 0) {
X
xujiaqi01 已提交
766 767 768 769 770 771 772
    if (copy_table_config_.need_copy()) {
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
773
    // pull sparse here
D
dongdaxiang 已提交
774
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
775 776 777 778
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
779 780 781
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
782 783 784
          break;
        }
      }
785 786 787
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
788 789
      CollectLabelInfo(i);
      FillSparseValue(i);
790 791 792 793 794 795
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
796
    }
D
dongdaxiang 已提交
797
    VLOG(3) << "fill sparse value for all sparse table done.";
798 799 800

    // do computation here
    for (auto& op : ops_) {
801 802 803 804 805 806 807 808
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
#ifdef PADDLE_WITH_PSLIB
        try {
          op->Run(*thread_scope_, place_);
        } catch (std::exception& e) {
          fprintf(stderr, "error message: %s\n", e.what());
          auto& ins_id_vec = device_reader_->GetInsIdVec();
          size_t batch_size = device_reader_->GetCurBatchSize();
          std::string s = "";
          for (auto& ins_id : ins_id_vec) {
            if (s != "") s += ",";
            s += ins_id;
          }
          fprintf(stderr, "batch_size: %zu, ins_ids_vec: %s\n", batch_size,
                  s.c_str());
          s = "";
          for (auto& param : all_param_) {
            Variable* var = thread_scope_->FindVar(param);
            if (var == nullptr) {
              continue;
            }
            Tensor* tensor = nullptr;
            int64_t len = 0;
            if (var->IsType<framework::LoDTensor>()) {
              tensor = var->GetMutable<LoDTensor>();
              len = tensor->numel();
834 835
            } else if (var->IsType<phi::SelectedRows>()) {
              auto selected_rows = var->GetMutable<phi::SelectedRows>();
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
              tensor = selected_rows->mutable_value();
              len = tensor->numel();
            }
            if (!tensor->IsInitialized()) {
              continue;
            }
            s += param + ":" + std::to_string(len) + ":";
            s += PrintLodTensor(tensor, 0, len);
            fprintf(stderr, "%s\n", s.c_str());
            fflush(stderr);
            s = "";
          }
          throw e;
        }
#else
851
        op->Run(*thread_scope_, place_);
852
#endif
853
      }
854 855
    }

856 857 858 859 860 861 862
#ifdef PADDLE_WITH_PSLIB
    // add data for MetricMsg
    if (Metric::GetInstance() != nullptr) {
      AddAucMonitor(thread_scope_, place_);
    }
#endif

863 864 865 866 867 868 869 870 871 872 873
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
874 875
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
876
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
877 878
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
879 880
    }

881 882
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
883 884
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
885 886 887 888 889 890 891 892
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
893
        }
894 895 896
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
897
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
898 899
            dump_slot_, &sparse_push_keys_[tid], no_cvm_,
            scale_sparse_gradient_with_batch_size_);
H
heqiaozhi 已提交
900
      }
901 902
    }

X
xujiaqi01 已提交
903 904 905 906 907 908 909 910 911 912 913 914
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

915
    if (need_to_push_dense_) {
Z
zhang wenhui 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
      if (flag_partial_push_) {
        Variable* var = (*thread_scope_).FindVar("cond_tag");
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        // check type in python code
        int64_t* cond_value_batch = tensor->data<int64_t>();

        for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
             ++i) {
          uint64_t tid = static_cast<uint64_t>(
              param_.program_config(0).push_dense_table_id(i));
          if (condvalue_set_.find(tid) != condvalue_set_.end()) {
            // common dense table must push dense
            if (cond2table_map_[cond_value_batch[0]] != tid) {
              // can't push dense
              continue;
            }
          }

          VLOG(3) << "push multitask dense gradient " << tid;
          fleet_ptr_->PushDenseVarsAsync(
              *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
              scale_datanorm_, cur_batch);
        }

      } else {
        for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
             ++i) {
          uint64_t tid = static_cast<uint64_t>(
              param_.program_config(0).push_dense_table_id(i));

          fleet_ptr_->PushDenseVarsAsync(
              *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
              scale_datanorm_, cur_batch);
        }
950
      }
Z
zhang wenhui 已提交
951

952
      VLOG(3) << "push dense gradient done.";
953

954 955 956 957 958
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
959

960 961 962 963 964
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
965 966
      }

967 968 969
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
970 971
    }

972 973 974 975 976 977 978 979 980 981
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
982 983
      }

984 985 986
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
987 988
    }

989
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
990 991
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
992 993 994 995
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
996
    }
997
    if (need_dump_field_) {
H
hutuxian 已提交
998 999 1000 1001
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
1002
    }
1003

D
dongdaxiang 已提交
1004
    PrintFetchVars();
1005 1006 1007
    thread_scope_->DropKids();
    ++batch_cnt;
  }
H
hutuxian 已提交
1008
  if (need_dump_field_ || need_dump_param_) {
1009 1010
    writer_.Flush();
  }
X
xujiaqi01 已提交
1011 1012 1013 1014 1015
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
1016 1017 1018 1019
}

}  // end namespace framework
}  // end namespace paddle