layer_test.cc 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/jit/layer.h"

#include <algorithm>
#include <fstream>
#include <iterator>
#include <string>
#include <unordered_map>

#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/variable.h"
26
#include "paddle/fluid/imperative/tracer.h"
27 28 29 30 31
#include "paddle/fluid/jit/serializer.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
32
#include "paddle/phi/kernels/copy_kernel.h"
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include "paddle/phi/kernels/funcs/math_function.h"

USE_OP_ITSELF(elementwise_add);
USE_OP_ITSELF(matmul_v2);
USE_OP_ITSELF(relu);
USE_OP_ITSELF(reduce_mean);
USE_OP_ITSELF(feed);
USE_OP_ITSELF(fetch);
USE_OP_ITSELF(scale);

PD_DECLARE_KERNEL(add, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(matmul, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(relu, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(mean, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(scale, CPU, ALL_LAYOUT);

49 50 51 52 53 54 55 56
#if defined(PADDLE_WITH_CUDA)
PD_DECLARE_KERNEL(add, KPS, ALL_LAYOUT);
PD_DECLARE_KERNEL(matmul, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(relu, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(mean, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(scale, GPU, ALL_LAYOUT);
#endif

57 58 59
namespace paddle {
namespace jit {

60 61 62 63 64
std::vector<Variable> PrepareInputs() {
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& dev_ctx = *pool.Get(default_place);

65
  Variable v;
66 67 68 69 70 71
  auto* dense_tensor = v.GetMutable<DenseTensor>();
  dense_tensor->Resize(phi::make_ddim({2, 4}));
  dense_tensor->mutable_data<float>(default_place);
  phi::funcs::set_constant(dev_ctx, dense_tensor, 2.);

  return {v};
72 73
}

74 75 76 77 78
TEST(CpuLayerTest, Construct) {
  auto tracer = std::make_shared<paddle::imperative::Tracer>();
  paddle::imperative::SetCurrentTracer(tracer);
  imperative::GetCurrentTracer()->SetExpectedPlace(phi::CPUPlace());

W
WangZhen 已提交
79
  std::string path = "./Testing/";
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  auto layer = jit::Load(path);
  auto inputs = PrepareInputs();

  auto outs = layer.forward(inputs);
  auto out_vars = outs[0];
  auto out_dense_tensor = out_vars.Get<DenseTensor>();
  auto out_data = out_dense_tensor.data<float>();
  EXPECT_NEAR(out_data[0], 0.02194316, 1e-6);

  auto func = layer.GetFunction("infer");
  outs = (*func)(inputs);
  out_vars = outs[0];
  out_dense_tensor = out_vars.Get<DenseTensor>();
  out_data = out_dense_tensor.data<float>();
  EXPECT_NEAR(out_data[0], 1.41562390, 1e-6);
}

97 98 99 100 101 102 103 104 105 106 107
#if defined(PADDLE_WITH_CUDA)
TEST(GpuLayerTest, Construct) {
  auto tracer = std::make_shared<paddle::imperative::Tracer>();
  paddle::imperative::SetCurrentTracer(tracer);
  imperative::GetCurrentTracer()->SetExpectedPlace(phi::GPUPlace(0));

  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& dev_ctx = *pool.Get(imperative::GetCurrentTracer()->ExpectedPlace());
  const auto* dev_ctx_gpu = static_cast<const phi::GPUContext*>(&dev_ctx);
  DenseTensor cpu_dense_tensor;

W
WangZhen 已提交
108
  std::string path = "./Testing/";
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  auto layer = jit::Load(path);
  auto inputs = PrepareInputs();

  auto outs = layer.forward(inputs);
  auto out_vars = outs[0];
  auto out_dense_tensor = out_vars.Get<DenseTensor>();
  phi::Copy(
      *dev_ctx_gpu, out_dense_tensor, phi::CPUPlace(), true, &cpu_dense_tensor);
  auto out_data = cpu_dense_tensor.data<float>();
  EXPECT_NEAR(out_data[0], 0.02194316, 1e-6);

  auto func = layer.GetFunction("infer");
  outs = (*func)(inputs);
  out_vars = outs[0];
  out_dense_tensor = out_vars.Get<DenseTensor>();
  phi::Copy(
      *dev_ctx_gpu, out_dense_tensor, phi::CPUPlace(), true, &cpu_dense_tensor);
  out_data = cpu_dense_tensor.data<float>();
  EXPECT_NEAR(out_data[0], 1.41562390, 1e-6);
}
#endif

131 132
}  // namespace jit
}  // namespace paddle