layer_test.cc 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/jit/layer.h"

#include <algorithm>
#include <fstream>
#include <iterator>
#include <string>
#include <unordered_map>

#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/variable.h"
26
#include "paddle/fluid/imperative/tracer.h"
27 28 29 30 31
#include "paddle/fluid/jit/serializer.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
32
#include "paddle/phi/kernels/copy_kernel.h"
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include "paddle/phi/kernels/funcs/math_function.h"

USE_OP_ITSELF(elementwise_add);
USE_OP_ITSELF(matmul_v2);
USE_OP_ITSELF(relu);
USE_OP_ITSELF(reduce_mean);
USE_OP_ITSELF(feed);
USE_OP_ITSELF(fetch);
USE_OP_ITSELF(scale);

PD_DECLARE_KERNEL(add, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(matmul, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(relu, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(mean, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(scale, CPU, ALL_LAYOUT);

49 50 51 52 53 54 55 56
#if defined(PADDLE_WITH_CUDA)
PD_DECLARE_KERNEL(add, KPS, ALL_LAYOUT);
PD_DECLARE_KERNEL(matmul, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(relu, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(mean, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(scale, GPU, ALL_LAYOUT);
#endif

57 58 59
namespace paddle {
namespace jit {

60 61 62 63 64
std::vector<Variable> PrepareInputs() {
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& dev_ctx = *pool.Get(default_place);

65
  Variable v;
66 67 68 69 70 71
  auto* dense_tensor = v.GetMutable<DenseTensor>();
  dense_tensor->Resize(phi::make_ddim({2, 4}));
  dense_tensor->mutable_data<float>(default_place);
  phi::funcs::set_constant(dev_ctx, dense_tensor, 2.);

  return {v};
72 73
}

74 75 76 77 78 79
TEST(CpuLayerTest, Construct) {
  auto tracer = std::make_shared<paddle::imperative::Tracer>();
  paddle::imperative::SetCurrentTracer(tracer);
  imperative::GetCurrentTracer()->SetExpectedPlace(phi::CPUPlace());

  std::string path = "./";
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  auto layer = jit::Load(path);
  auto inputs = PrepareInputs();

  auto outs = layer.forward(inputs);
  auto out_vars = outs[0];
  auto out_dense_tensor = out_vars.Get<DenseTensor>();
  auto out_data = out_dense_tensor.data<float>();
  EXPECT_NEAR(out_data[0], 0.02194316, 1e-6);

  auto func = layer.GetFunction("infer");
  outs = (*func)(inputs);
  out_vars = outs[0];
  out_dense_tensor = out_vars.Get<DenseTensor>();
  out_data = out_dense_tensor.data<float>();
  EXPECT_NEAR(out_data[0], 1.41562390, 1e-6);
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#if defined(PADDLE_WITH_CUDA)
TEST(GpuLayerTest, Construct) {
  auto tracer = std::make_shared<paddle::imperative::Tracer>();
  paddle::imperative::SetCurrentTracer(tracer);
  imperative::GetCurrentTracer()->SetExpectedPlace(phi::GPUPlace(0));

  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& dev_ctx = *pool.Get(imperative::GetCurrentTracer()->ExpectedPlace());
  const auto* dev_ctx_gpu = static_cast<const phi::GPUContext*>(&dev_ctx);
  DenseTensor cpu_dense_tensor;

  std::string path = "./";
  auto layer = jit::Load(path);
  auto inputs = PrepareInputs();

  auto outs = layer.forward(inputs);
  auto out_vars = outs[0];
  auto out_dense_tensor = out_vars.Get<DenseTensor>();
  phi::Copy(
      *dev_ctx_gpu, out_dense_tensor, phi::CPUPlace(), true, &cpu_dense_tensor);
  auto out_data = cpu_dense_tensor.data<float>();
  EXPECT_NEAR(out_data[0], 0.02194316, 1e-6);

  auto func = layer.GetFunction("infer");
  outs = (*func)(inputs);
  out_vars = outs[0];
  out_dense_tensor = out_vars.Get<DenseTensor>();
  phi::Copy(
      *dev_ctx_gpu, out_dense_tensor, phi::CPUPlace(), true, &cpu_dense_tensor);
  out_data = cpu_dense_tensor.data<float>();
  EXPECT_NEAR(out_data[0], 1.41562390, 1e-6);
}
#endif

131 132
}  // namespace jit
}  // namespace paddle