logic.py 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zhen Wang 已提交
15
from ..fluid.layer_helper import LayerHelper
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
Z
Zhen Wang 已提交
17
from ..fluid.layers.layer_function_generator import templatedoc
Z
zhiboniu 已提交
18
from ..static import Variable
Z
zhulei 已提交
19
from ..framework import VarBase as Tensor
H
hong 已提交
20
from ..framework import _in_eager_mode
21

22
# TODO: define logic functions of a tensor  
23 24 25 26 27
from ..fluid.layers import is_empty  # noqa: F401
from ..fluid.layers import logical_and  # noqa: F401
from ..fluid.layers import logical_not  # noqa: F401
from ..fluid.layers import logical_or  # noqa: F401
from ..fluid.layers import logical_xor  # noqa: F401
Z
zhiboniu 已提交
28
import paddle
W
wanghuancoder 已提交
29
from paddle import _C_ops
30
from paddle.tensor.creation import full
31

32 33
__all__ = []

34

W
wawltor 已提交
35
def equal_all(x, y, name=None):
36 37 38
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
39
    **NOTICE**: The output of this OP has no gradient.
40 41

    Args:
42 43
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
44 45
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
46 47

    Returns:
W
wawltor 已提交
48
        Tensor: output Tensor, data type is bool, value is [False] or [True].
49 50 51 52 53

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
54

55 56 57
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
58
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
59
          print(result1) # result1 = [True ]
W
wawltor 已提交
60
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
61
          print(result2) # result2 = [False ]
62
    """
Z
zhiboniu 已提交
63
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
64
        return _C_ops.equal_all(x, y)
W
wawltor 已提交
65 66

    helper = LayerHelper("equal_all", **locals())
67 68
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
69 70
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
71
    return out
Z
Zhen Wang 已提交
72 73 74


@templatedoc()
75
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
76 77 78 79
    """
    ${comment}

    Args:
80 81
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
82 83
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
84 85 86
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
87 88

    Returns:
89 90 91 92 93 94 95 96
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
97 98 99 100 101 102

    Examples:
        .. code-block:: python

          import paddle

103 104
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
105
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
106
                                  equal_nan=False, name="ignore_nan")
107 108 109
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
110
                                      equal_nan=True, name="equal_nan")
111 112 113
          np_result2 = result2.numpy()
          # [False]

114 115
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
116 117 118 119 120 121 122 123
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
124 125
    """

Z
zhiboniu 已提交
126
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
127 128 129
        return _C_ops.allclose(x, y, 'rtol',
                               str(rtol), 'atol',
                               str(atol), 'equal_nan', equal_nan)
130 131 132

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
133 134 135 136 137 138 139
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

140
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
141
    outputs = {'Out': out}
142
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
Z
Zhen Wang 已提交
143 144 145 146
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
147 148


W
wawltor 已提交
149 150
@templatedoc()
def equal(x, y, name=None):
151
    """
S
swtkiwi 已提交
152

153
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
154

W
wawltor 已提交
155
    **NOTICE**: The output of this OP has no gradient.
156 157

    Args:
158 159
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
160 161 162 163
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
164
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
165 166 167 168 169
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
170 171
          import paddle

172 173
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
174
          result1 = paddle.equal(x, y)
N
Noel 已提交
175
          print(result1)  # result1 = [True False False]
176
    """
177 178 179 180 181 182 183
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
            "Type of input args must be float, bool, int or Tensor, but received type {}".
            format(type(y)))
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

Z
zhiboniu 已提交
184
    if paddle.in_dynamic_mode():
H
hong 已提交
185 186 187
        if _in_eager_mode():
            return _C_ops.final_state_equal(x, y)

W
wanghuancoder 已提交
188
        return _C_ops.equal(x, y)
189

190 191 192 193
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "equal")
194 195 196 197 198 199 200
    helper = LayerHelper("equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
201
    return out
202

W
wawltor 已提交
203 204 205 206 207

@templatedoc()
def greater_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
208

W
wawltor 已提交
209 210 211
    **NOTICE**: The output of this OP has no gradient.

    Args:
212 213
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
214 215 216 217 218 219 220
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
221

W
wawltor 已提交
222 223
            import paddle

224 225
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
226
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
227
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
228
    """
Z
zhiboniu 已提交
229
    if paddle.in_dynamic_mode():
H
hong 已提交
230 231 232
        if _in_eager_mode():
            return _C_ops.final_state_greater_equal(x, y)

W
wanghuancoder 已提交
233
        return _C_ops.greater_equal(x, y)
234

235 236
    check_variable_and_dtype(x, "x",
                             ["bool", "float32", "float64", "int32", "int64"],
237
                             "greater_equal")
238 239
    check_variable_and_dtype(y, "y",
                             ["bool", "float32", "float64", "int32", "int64"],
240 241 242 243 244 245 246 247 248 249
                             "greater_equal")
    helper = LayerHelper("greater_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
250 251 252 253 254 255 256
    return out


@templatedoc()
def greater_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
257

W
wawltor 已提交
258 259 260
    **NOTICE**: The output of this OP has no gradient.

    Args:
261 262
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
263 264 265 266 267 268 269
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
N
Noel 已提交
270

W
wawltor 已提交
271 272
            import paddle

273 274
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
275
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
276
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
277
    """
Z
zhiboniu 已提交
278
    if paddle.in_dynamic_mode():
H
hong 已提交
279 280 281
        if _in_eager_mode():
            return _C_ops.final_state_greater_than(x, y)

W
wanghuancoder 已提交
282
        return _C_ops.greater_than(x, y)
283

284 285
    check_variable_and_dtype(x, "x",
                             ["bool", "float32", "float64", "int32", "int64"],
286
                             "greater_than")
287 288
    check_variable_and_dtype(y, "y",
                             ["bool", "float32", "float64", "int32", "int64"],
289 290 291 292 293 294 295 296 297 298
                             "greater_than")
    helper = LayerHelper("greater_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
299 300 301 302 303 304 305
    return out


@templatedoc()
def less_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
306

W
wawltor 已提交
307 308 309
    **NOTICE**: The output of this OP has no gradient.

    Args:
310 311
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
312 313 314 315 316 317 318 319
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
320

W
wawltor 已提交
321 322
            import paddle

323 324
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
325
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
326
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
327
    """
Z
zhiboniu 已提交
328
    if paddle.in_dynamic_mode():
H
hong 已提交
329 330 331
        if _in_eager_mode():
            return _C_ops.final_state_less_equal(x, y)

W
wanghuancoder 已提交
332
        return _C_ops.less_equal(x, y)
333

334 335 336 337
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "less_equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "less_equal")
338 339 340 341 342 343 344
    helper = LayerHelper("less_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_equal', inputs={'X': [x],
                                   'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
345 346 347 348 349 350 351
    return out


@templatedoc()
def less_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
352

W
wawltor 已提交
353 354 355
    **NOTICE**: The output of this OP has no gradient.

    Args:
356 357
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
358 359 360 361 362 363 364 365
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
366

W
wawltor 已提交
367 368
            import paddle

369 370
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
371
            result1 = paddle.less_than(x, y)
N
Noel 已提交
372
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
373
    """
Z
zhiboniu 已提交
374
    if paddle.in_dynamic_mode():
H
hong 已提交
375 376 377
        if _in_eager_mode():
            return _C_ops.final_state_less_than(x, y)

W
wanghuancoder 已提交
378
        return _C_ops.less_than(x, y)
379

380 381 382 383
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "less_than")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "less_than")
384 385 386 387 388 389 390
    helper = LayerHelper("less_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
391 392 393 394 395 396 397
    return out


@templatedoc()
def not_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
398
    
W
wawltor 已提交
399 400 401
    **NOTICE**: The output of this OP has no gradient.

    Args:
402 403
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
404 405 406 407 408 409 410 411
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
412

W
wawltor 已提交
413 414
            import paddle

415 416
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
417
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
418
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
419
    """
Z
zhiboniu 已提交
420
    if paddle.in_dynamic_mode():
H
hong 已提交
421 422 423
        if _in_eager_mode():
            return _C_ops.final_state_not_equal(x, y)

W
wanghuancoder 已提交
424
        return _C_ops.not_equal(x, y)
425

426 427 428 429
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "not_equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "not_equal")
430 431 432 433 434 435 436
    helper = LayerHelper("not_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
437
    return out
Z
zhulei 已提交
438 439 440 441 442


def is_tensor(x):
    """

C
chentianyu03 已提交
443
    This function tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
444 445 446 447 448

    Args:
        x (object): Object to test.

    Returns:
C
chentianyu03 已提交
449
        A boolean value. True if 'x' is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
H
hong 已提交
465
    return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
466 467 468


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
Z
zhiboniu 已提交
469
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
470
        op = getattr(_C_ops, op_name)
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        if binary_op:
            return op(x, y)
        else:
            return op(x)

    check_variable_and_dtype(
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name)
    if y is not None:
        check_variable_and_dtype(
            y, "y", ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
        
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
    
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """

    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False)
A
andyjpaddle 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, True]
    """

Z
zhiboniu 已提交
657
    if paddle.in_dynamic_mode():
A
andyjpaddle 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
        return _C_ops.isclose(x, y, 'rtol',
                              str(rtol), 'atol',
                              str(atol), 'equal_nan', equal_nan)

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
    check_type(rtol, 'rtol', float, 'isclose')
    check_type(atol, 'atol', float, 'isclose')
    check_type(equal_nan, 'equal_nan', bool, 'isclose')

    helper = LayerHelper("isclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': x, 'Other': y}
    outputs = {'Out': out}
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
    helper.append_op(
        type='isclose', inputs=inputs, outputs=outputs, attrs=attrs)
    return out